The AI Alignment Paradox
- URL: http://arxiv.org/abs/2405.20806v2
- Date: Fri, 22 Nov 2024 22:55:11 GMT
- Title: The AI Alignment Paradox
- Authors: Robert West, Roland Aydin,
- Abstract summary: The better we align AI models with our values, the easier we may make it for adversaries to misalign the models.
With AI's increasing real-world impact, it is imperative that a broad community of researchers be aware of the AI alignment paradox.
- Score: 10.674155943520729
- License:
- Abstract: The field of AI alignment aims to steer AI systems toward human goals, preferences, and ethical principles. Its contributions have been instrumental for improving the output quality, safety, and trustworthiness of today's AI models. This perspective article draws attention to a fundamental challenge we see in all AI alignment endeavors, which we term the "AI alignment paradox": The better we align AI models with our values, the easier we may make it for adversaries to misalign the models. We illustrate the paradox by sketching three concrete example incarnations for the case of language models, each corresponding to a distinct way in which adversaries might exploit the paradox. With AI's increasing real-world impact, it is imperative that a broad community of researchers be aware of the AI alignment paradox and work to find ways to mitigate it, in order to ensure the beneficial use of AI for the good of humanity.
Related papers
- Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Antagonistic AI [11.25562632407588]
We explore the shadow of the sycophantic paradigm, a design space we term antagonistic AI.
We consider whether antagonistic AI systems may sometimes have benefits to users, such as forcing users to confront their assumptions.
We lay out a design space for antagonistic AI, articulating potential benefits, design techniques, and methods of embedding antagonistic elements into user experience.
arXiv Detail & Related papers (2024-02-12T00:44:37Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
We present a novel formulation of the interaction between the human and the AI as a sequential game.
We show that in this case the AI's problem of helping bounded-rational humans make better decisions reduces to a Bayes-adaptive POMDP.
We discuss ways in which the machine can learn to improve upon its own limitations as well with the help of the human.
arXiv Detail & Related papers (2022-04-03T21:00:51Z) - Uncalibrated Models Can Improve Human-AI Collaboration [10.106324182884068]
We show that presenting AI models as more confident than they actually are can improve human-AI performance.
We first learn a model for how humans incorporate AI advice using data from thousands of human interactions.
arXiv Detail & Related papers (2022-02-12T04:51:00Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - On the Ethics of Building AI in a Responsible Manner [22.792375902000614]
We argue that a formalism of AI alignment that does not distinguish between strategic and misalignments is not useful.
We propose a definition of a strategic-AI-alignment and prove that most machine learning algorithms that are being used in practice today do not suffer from the strategic-AI-alignment problem.
arXiv Detail & Related papers (2020-03-30T04:11:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.