Optimally Improving Cooperative Learning in a Social Setting
- URL: http://arxiv.org/abs/2405.20808v1
- Date: Fri, 31 May 2024 14:07:33 GMT
- Title: Optimally Improving Cooperative Learning in a Social Setting
- Authors: Shahrzad Haddadan, Cheng Xin, Jie Gao,
- Abstract summary: We consider a cooperative learning scenario where a collection of networked agents with individually owned classifiers dynamically update their predictions.
We show a time algorithm for optimizing the aggregate objective function, and show that optimizing the egalitarian objective function is NP-hard.
The performance of all of our algorithms are guaranteed by mathematical analysis and backed by experiments on synthetic and real data.
- Score: 4.200480236342444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a cooperative learning scenario where a collection of networked agents with individually owned classifiers dynamically update their predictions, for the same classification task, through communication or observations of each other's predictions. Clearly if highly influential vertices use erroneous classifiers, there will be a negative effect on the accuracy of all the agents in the network. We ask the following question: how can we optimally fix the prediction of a few classifiers so as maximize the overall accuracy in the entire network. To this end we consider an aggregate and an egalitarian objective function. We show a polynomial time algorithm for optimizing the aggregate objective function, and show that optimizing the egalitarian objective function is NP-hard. Furthermore, we develop approximation algorithms for the egalitarian improvement. The performance of all of our algorithms are guaranteed by mathematical analysis and backed by experiments on synthetic and real data.
Related papers
- Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data [23.661713049508375]
We propose an algorithm that learns over a submanifold in the setting of a client.
We show that our proposed algorithm converges sub-ly to a neighborhood of a first-order optimal solution by using a novel analysis.
arXiv Detail & Related papers (2024-06-12T17:53:28Z) - Personalized Federated Learning with Feature Alignment and Classifier
Collaboration [13.320381377599245]
Data heterogeneity is one of the most challenging issues in federated learning.
One such approach in deep neural networks based tasks is employing a shared feature representation and learning a customized classifier head for each client.
In this work, we conduct explicit local-global feature alignment by leveraging global semantic knowledge for learning a better representation.
arXiv Detail & Related papers (2023-06-20T19:58:58Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Decentralized Gossip-Based Stochastic Bilevel Optimization over
Communication Networks [42.76623191830371]
We propose a gossip-based distributed bilevel optimization algorithm.
Agents can solve both networked and outer problems in a single time.
Our algorithm achieves the state-of-the-art efficiency and test accuracy.
arXiv Detail & Related papers (2022-06-22T06:38:54Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - MIO : Mutual Information Optimization using Self-Supervised Binary
Contrastive Learning [19.5917119072985]
We model contrastive learning into a binary classification problem to predict if a pair is positive or not.
The proposed method outperforms the state-of-the-art algorithms on benchmark datasets like STL-10, CIFAR-10, CIFAR-100.
arXiv Detail & Related papers (2021-11-24T17:51:29Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Practical Bayesian Optimization of Objectives with Conditioning
Variables [1.0497128347190048]
We consider the more general case where a user is faced with multiple problems that each need to be optimized conditional on a state variable.
Similarity across objectives boosts optimization of each objective in two ways.
We propose a framework for conditional optimization: ConBO.
arXiv Detail & Related papers (2020-02-23T22:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.