Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data
- URL: http://arxiv.org/abs/2406.08465v1
- Date: Wed, 12 Jun 2024 17:53:28 GMT
- Title: Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data
- Authors: Jiaojiao Zhang, Jiang Hu, Anthony Man-Cho So, Mikael Johansson,
- Abstract summary: We propose an algorithm that learns over a submanifold in the setting of a client.
We show that our proposed algorithm converges sub-ly to a neighborhood of a first-order optimal solution by using a novel analysis.
- Score: 23.661713049508375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many machine learning tasks, such as principal component analysis and low-rank matrix completion, give rise to manifold optimization problems. Although there is a large body of work studying the design and analysis of algorithms for manifold optimization in the centralized setting, there are currently very few works addressing the federated setting. In this paper, we consider nonconvex federated learning over a compact smooth submanifold in the setting of heterogeneous client data. We propose an algorithm that leverages stochastic Riemannian gradients and a manifold projection operator to improve computational efficiency, uses local updates to improve communication efficiency, and avoids client drift. Theoretically, we show that our proposed algorithm converges sub-linearly to a neighborhood of a first-order optimal solution by using a novel analysis that jointly exploits the manifold structure and properties of the loss functions. Numerical experiments demonstrate that our algorithm has significantly smaller computational and communication overhead than existing methods.
Related papers
- Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Faster Riemannian Newton-type Optimization by Subsampling and Cubic
Regularization [3.867143522757309]
This work is on constrained large-scale non-constrained optimization where the constraint set implies a manifold structure.
We propose a new second-order saddleian optimization algorithm, aiming at improving convergence and reducing computational cost.
arXiv Detail & Related papers (2023-02-22T00:37:44Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Faster Adaptive Momentum-Based Federated Methods for Distributed
Composition Optimization [14.579475552088692]
We propose a class of faster federated composition optimization algorithms (i.e. MFCGD and AdaMFCGD) to solve the non distributed composition problems.
In particular, our adaptive algorithm (i.e., AdaMFCGD) uses a unified adaptive matrix to flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-03T15:17:04Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Decentralized Gossip-Based Stochastic Bilevel Optimization over
Communication Networks [42.76623191830371]
We propose a gossip-based distributed bilevel optimization algorithm.
Agents can solve both networked and outer problems in a single time.
Our algorithm achieves the state-of-the-art efficiency and test accuracy.
arXiv Detail & Related papers (2022-06-22T06:38:54Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
Federated learning is a prime candidate for distributed machine learning at the network edge.
Existing algorithms face issues with slow convergence and/or robustness of performance.
We propose a contextual aggregation scheme that achieves the optimal context-dependent bound on loss reduction.
arXiv Detail & Related papers (2022-03-23T21:42:31Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Accelerated Algorithms for Convex and Non-Convex Optimization on
Manifolds [9.632674803757475]
We propose a scheme for solving convex and non- optimization problems on distance.
Our proposed algorithm adapts to the level of complexity in the objective function.
arXiv Detail & Related papers (2020-10-18T02:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.