論文の概要: einspace: Searching for Neural Architectures from Fundamental Operations
- arxiv url: http://arxiv.org/abs/2405.20838v2
- Date: Wed, 30 Oct 2024 12:35:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:25:48.610209
- Title: einspace: Searching for Neural Architectures from Fundamental Operations
- Title(参考訳): einspace: 基本的な操作からニューラルネットワークを探す
- Authors: Linus Ericsson, Miguel Espinosa, Chenhongyi Yang, Antreas Antoniou, Amos Storkey, Shay B. Cohen, Steven McDonagh, Elliot J. Crowley,
- Abstract要約: 本稿では,パラメータ化された確率的文脈自由文法に基づく検索空間であるeinspaceを紹介する。
競合アーキテクチャはゼロから検索することで得ることができ、強力なベースラインで検索を初期化する際には、常に大きな改善が得られます。
- 参考スコア(独自算出の注目度): 28.346238250052455
- License:
- Abstract: Neural architecture search (NAS) finds high performing networks for a given task. Yet the results of NAS are fairly prosaic; they did not e.g. create a shift from convolutional structures to transformers. This is not least because the search spaces in NAS often aren't diverse enough to include such transformations a priori. Instead, for NAS to provide greater potential for fundamental design shifts, we need a novel expressive search space design which is built from more fundamental operations. To this end, we introduce einspace, a search space based on a parameterised probabilistic context-free grammar. Our space is versatile, supporting architectures of various sizes and complexities, while also containing diverse network operations which allow it to model convolutions, attention components and more. It contains many existing competitive architectures, and provides flexibility for discovering new ones. Using this search space, we perform experiments to find novel architectures as well as improvements on existing ones on the diverse Unseen NAS datasets. We show that competitive architectures can be obtained by searching from scratch, and we consistently find large improvements when initialising the search with strong baselines. We believe that this work is an important advancement towards a transformative NAS paradigm where search space expressivity and strategic search initialisation play key roles.
- Abstract(参考訳): ニューラルアーキテクチャサーチ(NAS)は、与えられたタスクに対して高いパフォーマンスのネットワークを見つける。
しかし、NASの結果はかなりプロザイクで、egが畳み込み構造からトランスフォーマーへシフトするわけではない。
これは、NASの検索空間が、そのような変換を先入観に含めるほど多様ではないためである。
代わりに、NASが基本設計シフトにより大きな可能性をもたらすためには、より基本的な操作から構築された新しい表現型検索空間設計が必要である。
この目的のために,パラメータ化された確率的文脈自由文法に基づく検索空間 einspace を導入する。
我々の空間は多用途であり、様々な大きさと複雑さのアーキテクチャをサポートしながら、畳み込みや注目コンポーネントなどをモデル化できる多様なネットワーク操作も備えています。
既存の競争力のあるアーキテクチャが数多く含まれており、新しいアーキテクチャを見つけるための柔軟性を提供する。
この検索空間を用いて、新しいアーキテクチャの探索と、Unseen NASデータセットの既存アーキテクチャの改善を行う。
競合アーキテクチャはゼロから検索することで得ることができ、強力なベースラインで検索を初期化する際には、常に大きな改善が得られます。
我々は,この研究が,検索空間表現性と戦略的検索初期化が重要な役割を担う変革的NASパラダイムへの重要な進展であると考えている。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - UnrealNAS: Can We Search Neural Architectures with Unreal Data? [84.78460976605425]
ニューラルアーキテクチャサーチ(NAS)はディープニューラルネットワーク(DNN)の自動設計において大きな成功を収めた。
これまでの研究は、NASに地道ラベルを持つことの必要性を分析し、幅広い関心を喚起した。
NASが有効であるためには、実際のデータが必要であるかどうか、さらに疑問を呈する。
論文 参考訳(メタデータ) (2022-05-04T16:30:26Z) - Towards Less Constrained Macro-Neural Architecture Search [2.685668802278155]
ニューラルアーキテクチャサーチ(NAS)ネットワークは、様々なタスクで最先端のパフォーマンスを達成する。
ほとんどのNAS手法は、探索を制約する人間定義の仮定に大きく依存している。
我々は,LCMNASが最小のGPU計算でゼロから最先端アーキテクチャを生成することを示す実験を行った。
論文 参考訳(メタデータ) (2022-03-10T17:53:03Z) - NAS-Bench-360: Benchmarking Diverse Tasks for Neural Architecture Search [18.9676056830197]
既存のニューラルアーキテクチャサーチ(NAS)ベンチマークとアルゴリズムは、よく研究されたタスクのパフォーマンスを優先している。
我々は、畳み込みニューラルネットワーク(CNN)のための最先端NAS手法を評価するベンチマークスイートであるNAS-Bench-360を提案する。
論文 参考訳(メタデータ) (2021-10-12T01:13:18Z) - TransNAS-Bench-101: Improving Transferability and Generalizability of
Cross-Task Neural Architecture Search [98.22779489340869]
本研究では、7つの視覚タスクにわたるネットワーク性能を含むベンチマークデータセットであるTransNAS-Bench-101を提案する。
セルレベルの検索空間とマクロレベルの検索空間という,基本的に異なるタイプの検索空間を探索する。
7つのタスクで7,352のバックボーンが評価され、詳細なトレーニング情報を備えた51,464のトレーニングモデルが提供される。
論文 参考訳(メタデータ) (2021-05-25T12:15:21Z) - Generative Adversarial Neural Architecture Search [21.05611902967155]
理論的に証明可能な収束保証を備えたGA-NAS(Generative Adversarial NAS)を提案する。
GA-NASは、他のNAS手法によって既に最適化されているベースラインを改善するために利用できることを示す。
論文 参考訳(メタデータ) (2021-05-19T18:54:44Z) - GOLD-NAS: Gradual, One-Level, Differentiable [100.12492801459105]
GOLD-NAS (Gradual One-Level Differentiable Neural Architecture Search) という新しいアルゴリズムを提案する。
1レベル最適化に可変リソース制約を導入し、弱い演算子をスーパーネットワークから徐々に追い出す。
論文 参考訳(メタデータ) (2020-07-07T10:37:49Z) - Learning Architectures from an Extended Search Space for Language
Modeling [37.79977691127229]
ニューラルアーキテクチャサーチ(NAS)のセル内アーキテクチャとセル間アーキテクチャの両方を学ぶための一般的なアプローチを提案する。
繰り返しのニューラルネットワークモデリングでは、TBとWikiTextのデータに対して強力なベースラインをはるかに上回り、TBに新たな最先端技術が導入された。
学習したアーキテクチャは、他のシステムに優れた転送可能性を示す。
論文 参考訳(メタデータ) (2020-05-06T05:02:33Z) - NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
Search [55.12928953187342]
我々は,NAS-Bench-101:NAS-Bench-201の拡張を提案する。
NAS-Bench-201は固定探索空間を持ち、最新のNASアルゴリズムのほとんどすべてに統一されたベンチマークを提供する。
我々はNASアルゴリズムの新しい設計にインスピレーションを与えることができる微粒化損失や精度などの付加的な診断情報を提供する。
論文 参考訳(メタデータ) (2020-01-02T05:28:26Z) - Scalable NAS with Factorizable Architectural Parameters [102.51428615447703]
Neural Architecture Search (NAS)は、機械学習とコンピュータビジョンにおける新たなトピックである。
本稿では,多数の候補演算子をより小さな部分空間に分解することで,スケーラブルなアルゴリズムを提案する。
検索コストが少なめに増加し、再トレーニングに余分なコストがかからないため、これまで調査されなかった興味深いアーキテクチャが見つかる。
論文 参考訳(メタデータ) (2019-12-31T10:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。