MeshXL: Neural Coordinate Field for Generative 3D Foundation Models
- URL: http://arxiv.org/abs/2405.20853v2
- Date: Tue, 18 Jun 2024 16:03:10 GMT
- Title: MeshXL: Neural Coordinate Field for Generative 3D Foundation Models
- Authors: Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun Yin, Yanru Wang, Zhibin Wang, Chi Zhang, Jingyi Yu, Gang Yu, Bin Fu, Tao Chen,
- Abstract summary: We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
- Score: 51.1972329762843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The polygon mesh representation of 3D data exhibits great flexibility, fast rendering speed, and storage efficiency, which is widely preferred in various applications. However, given its unstructured graph representation, the direct generation of high-fidelity 3D meshes is challenging. Fortunately, with a pre-defined ordering strategy, 3D meshes can be represented as sequences, and the generation process can be seamlessly treated as an auto-regressive problem. In this paper, we validate the Neural Coordinate Field (NeurCF), an explicit coordinate representation with implicit neural embeddings, is a simple-yet-effective representation for large-scale sequential mesh modeling. After that, we present MeshXL, a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches. Extensive experiments show that MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - PivotMesh: Generic 3D Mesh Generation via Pivot Vertices Guidance [66.40153183581894]
We introduce a generic and scalable mesh generation framework PivotMesh.
PivotMesh makes an initial attempt to extend the native mesh generation to large-scale datasets.
We show that PivotMesh can generate compact and sharp 3D meshes across various categories.
arXiv Detail & Related papers (2024-05-27T07:13:13Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
We consider the task of generating realistic 3D shapes for automatic scene generation and physical simulation.
We take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes.
Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parametrization.
arXiv Detail & Related papers (2023-03-14T17:59:01Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTet is a conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels.
Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology.
arXiv Detail & Related papers (2021-11-08T05:29:35Z) - PolyGen: An Autoregressive Generative Model of 3D Meshes [22.860421649320287]
We present an approach which models the mesh directly using a Transformer-based architecture.
Our model can condition on a range of inputs, including object classes, voxels, and images.
We show that the model is capable of producing high-quality, usable meshes, and establish log-likelihood benchmarks for the mesh-modelling task.
arXiv Detail & Related papers (2020-02-23T17:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.