PolyGen: An Autoregressive Generative Model of 3D Meshes
- URL: http://arxiv.org/abs/2002.10880v1
- Date: Sun, 23 Feb 2020 17:16:34 GMT
- Title: PolyGen: An Autoregressive Generative Model of 3D Meshes
- Authors: Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, Peter W. Battaglia
- Abstract summary: We present an approach which models the mesh directly using a Transformer-based architecture.
Our model can condition on a range of inputs, including object classes, voxels, and images.
We show that the model is capable of producing high-quality, usable meshes, and establish log-likelihood benchmarks for the mesh-modelling task.
- Score: 22.860421649320287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polygon meshes are an efficient representation of 3D geometry, and are of
central importance in computer graphics, robotics and games development.
Existing learning-based approaches have avoided the challenges of working with
3D meshes, instead using alternative object representations that are more
compatible with neural architectures and training approaches. We present an
approach which models the mesh directly, predicting mesh vertices and faces
sequentially using a Transformer-based architecture. Our model can condition on
a range of inputs, including object classes, voxels, and images, and because
the model is probabilistic it can produce samples that capture uncertainty in
ambiguous scenarios. We show that the model is capable of producing
high-quality, usable meshes, and establish log-likelihood benchmarks for the
mesh-modelling task. We also evaluate the conditional models on surface
reconstruction metrics against alternative methods, and demonstrate competitive
performance despite not training directly on this task.
Related papers
- Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
We propose an innovative framework called Point-MGE to explore the benefits of deeply integrating 3D representation learning and generative learning.
In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset.
Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
arXiv Detail & Related papers (2024-06-25T07:57:03Z) - MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
arXiv Detail & Related papers (2024-05-31T14:35:35Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Randomized 3D Scene Generation for Generalizable Self-Supervised
Pre-Training [0.0]
We propose a new method to generate 3D scenes with spherical harmonics.
It surpasses the previous formula-driven method with a clear margin and achieves on-par results with methods using real-world scans and CAD models.
arXiv Detail & Related papers (2023-06-07T08:28:38Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
We consider the task of generating realistic 3D shapes for automatic scene generation and physical simulation.
We take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes.
Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parametrization.
arXiv Detail & Related papers (2023-03-14T17:59:01Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.