Parameter identification in linear non-Gaussian causal models under general confounding
- URL: http://arxiv.org/abs/2405.20856v1
- Date: Fri, 31 May 2024 14:39:14 GMT
- Title: Parameter identification in linear non-Gaussian causal models under general confounding
- Authors: Daniele Tramontano, Mathias Drton, Jalal Etesami,
- Abstract summary: We study identification of the linear coefficients when such models contain latent variables.
Our main result is a graphical criterion that is necessary and sufficient for deciding generic identifiability of direct causal effects.
We report on estimations based on the identification result, explore a generalization to models with feedback loops, and provide new results on the identifiability of the causal graph.
- Score: 8.273471398838533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear non-Gaussian causal models postulate that each random variable is a linear function of parent variables and non-Gaussian exogenous error terms. We study identification of the linear coefficients when such models contain latent variables. Our focus is on the commonly studied acyclic setting, where each model corresponds to a directed acyclic graph (DAG). For this case, prior literature has demonstrated that connections to overcomplete independent component analysis yield effective criteria to decide parameter identifiability in latent variable models. However, this connection is based on the assumption that the observed variables linearly depend on the latent variables. Departing from this assumption, we treat models that allow for arbitrary non-linear latent confounding. Our main result is a graphical criterion that is necessary and sufficient for deciding the generic identifiability of direct causal effects. Moreover, we provide an algorithmic implementation of the criterion with a run time that is polynomial in the number of observed variables. Finally, we report on estimation heuristics based on the identification result, explore a generalization to models with feedback loops, and provide new results on the identifiability of the causal graph.
Related papers
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
Causal discovery from observational data holds great promise.
Existing methods rely on strong assumptions about the underlying causal structure.
We propose a flexible algorithm for causal discovery across linear, nonlinear, and latent variable models.
arXiv Detail & Related papers (2024-07-26T14:09:06Z) - On the Parameter Identifiability of Partially Observed Linear Causal Models [23.08796869216895]
We investigate whether the edge coefficients can be recovered given the causal structure and partially observed data.
We identify three types of indeterminacy for the parameters in partially observed linear causal models.
We propose a novel likelihood-based parameter estimation method that addresses the variance indeterminacy of latent variables in a specific way.
arXiv Detail & Related papers (2024-07-24T03:43:55Z) - Linear causal disentanglement via higher-order cumulants [0.0]
We study the identifiability of linear causal disentanglement, assuming access to data under multiple contexts.
We show that one perfect intervention on each latent variable is sufficient and in the worst case necessary to recover parameters under perfect interventions.
arXiv Detail & Related papers (2024-07-05T15:53:16Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Identifiability of latent-variable and structural-equation models: from
linear to nonlinear [2.159277717031637]
In factor analysis, non-Gaussianity of the (latent) variables has been shown to provide identifiability.
More recently, we have shown how even general non nonlinear versions of such models can be estimated.
arXiv Detail & Related papers (2023-02-06T10:21:21Z) - Linear Causal Disentanglement via Interventions [8.444187296409051]
Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model.
We study observed variables that are a linear transformation of a linear latent causal model.
arXiv Detail & Related papers (2022-11-29T18:43:42Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.