On the Condition Monitoring of Bolted Joints through Acoustic Emission and Deep Transfer Learning: Generalization, Ordinal Loss and Super-Convergence
- URL: http://arxiv.org/abs/2405.20887v1
- Date: Wed, 29 May 2024 13:07:21 GMT
- Title: On the Condition Monitoring of Bolted Joints through Acoustic Emission and Deep Transfer Learning: Generalization, Ordinal Loss and Super-Convergence
- Authors: Emmanuel Ramasso, Rafael de O. Teloli, Romain Marcel,
- Abstract summary: This paper investigates the use of deep transfer learning based on convolutional neural networks (CNNs) to monitor bolted joints using acoustic emissions.
We evaluate the performance of our methodology using the ORION-AE benchmark, a structure composed of two thin beams connected by three bolts.
- Score: 0.12289361708127876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the use of deep transfer learning based on convolutional neural networks (CNNs) to monitor the condition of bolted joints using acoustic emissions. Bolted structures are critical components in many mechanical systems, and the ability to monitor their condition status is crucial for effective structural health monitoring. We evaluated the performance of our methodology using the ORION-AE benchmark, a structure composed of two thin beams connected by three bolts, where highly noisy acoustic emission measurements were taken to detect changes in the applied tightening torque of the bolts. The data used from this structure is derived from the transformation of acoustic emission data streams into images using continuous wavelet transform, and leveraging pretrained CNNs for feature extraction and denoising. Our experiments compared single-sensor versus multiple-sensor fusion for estimating the tightening level (loosening) of bolts and evaluated the use of raw versus prefiltered data on the performance. We particularly focused on the generalization capabilities of CNN-based transfer learning across different measurement campaigns and we studied ordinal loss functions to penalize incorrect predictions less severely when close to the ground truth, thereby encouraging misclassification errors to be in adjacent classes. Network configurations as well as learning rate schedulers are also investigated, and super-convergence is obtained, i.e., high classification accuracy is achieved in a few number of iterations with different networks. Furthermore, results demonstrate the generalization capabilities of CNN-based transfer learning for monitoring bolted structures by acoustic emission with varying amounts of prior information required during training.
Related papers
- Understanding and Leveraging the Learning Phases of Neural Networks [7.1169582271841625]
The learning dynamics of deep neural networks are not well understood.
We comprehensively analyze the learning dynamics by investigating a layer's reconstruction ability of the input and prediction performance.
We show the existence of three phases using common datasets and architectures such as ResNet and VGG.
arXiv Detail & Related papers (2023-12-11T23:20:58Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Assessing the Generalization Gap of Learning-Based Speech Enhancement
Systems in Noisy and Reverberant Environments [0.7366405857677227]
Generalization to unseen conditions is typically assessed by testing the system with a new speech, noise or room impulse response database.
The present study introduces a generalization assessment framework that uses a reference model trained on the test condition.
The proposed framework is applied to evaluate the generalization potential of a feedforward neural network (FFNN), ConvTasNet, DCCRN and MANNER.
arXiv Detail & Related papers (2023-09-12T12:51:12Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - Measuring Overfitting in Convolutional Neural Networks using Adversarial
Perturbations and Label Noise [3.395452700023097]
Overfitted neural networks tend to rather memorize noise in the training data than generalize to unseen data.
We introduce several anti-overfitting measures in architectures based on VGG and ResNet.
We assess the applicability of the proposed metrics by measuring the overfitting degree of several CNN architectures outside of our model pool.
arXiv Detail & Related papers (2022-09-27T13:40:53Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - CNN-DST: ensemble deep learning based on Dempster-Shafer theory for
vibration-based fault recognition [0.0]
This study proposes an ensemble deep learning framework based on a convolutional neural network (CNN) and Dempster-Shafer theory (DST)
To validate the proposed CNN-DST framework, it is applied to an experimental dataset created by the broadband vibrational responses of polycrystalline Nickel alloy first-stage turbine blades.
The proposed CNN-DST framework classifies the turbine blades with an average prediction accuracy of 97.19%.
arXiv Detail & Related papers (2021-10-14T07:34:27Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - Fully convolutional networks for structural health monitoring through
multivariate time series classification [0.0]
We propose a novel approach to Structural Health Monitoring (SHM)
It aims at the automatic identification of damage-sensitive features from data acquired through pervasive sensor systems.
Damage detection and localization are formulated as classification problems, and tackled through Fully Convolutional Networks (FCNs)
arXiv Detail & Related papers (2020-02-12T21:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.