Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise
- URL: http://arxiv.org/abs/2502.13395v1
- Date: Wed, 19 Feb 2025 03:09:49 GMT
- Title: Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise
- Authors: Tianye Huang, Aopeng Li, Xiang Li, Jing Zhang, Sijing Xian, Qi Zhang, Mingkong Lu, Guodong Chen, Liangming Xiong, Xiangyun Hu,
- Abstract summary: Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals.
DAS exhibits a lower signal-to-noise ratio (S/N) compared to geophones.
This reduced S/N can negatively impact data analyses containing inversion and interpretation.
- Score: 13.466125373185399
- License:
- Abstract: Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals, providing cost-effective and dense monitoring capabilities. It offers several advantages including resistance to extreme conditions, immunity to electromagnetic interference, and accurate detection. However, DAS typically exhibits a lower signal-to-noise ratio (S/N) compared to geophones and is susceptible to various noise types, such as random noise, erratic noise, level noise, and long-period noise. This reduced S/N can negatively impact data analyses containing inversion and interpretation. While artificial intelligence has demonstrated excellent denoising capabilities, most existing methods rely on supervised learning with labeled data, which imposes stringent requirements on the quality of the labels. To address this issue, we develop a label-free unsupervised learning (UL) network model based on Context-Pyramid-UNet (CP-UNet) to suppress erratic and random noises in DAS data. The CP-UNet utilizes the Context Pyramid Module in the encoding and decoding process to extract features and reconstruct the DAS data. To enhance the connectivity between shallow and deep features, we add a Connected Module (CM) to both encoding and decoding section. Layer Normalization (LN) is utilized to replace the commonly employed Batch Normalization (BN), accelerating the convergence of the model and preventing gradient explosion during training. Huber-loss is adopted as our loss function whose parameters are experimentally determined. We apply the network to both the 2-D synthetic and filed data. Comparing to traditional denoising methods and the latest UL framework, our proposed method demonstrates superior noise reduction performance.
Related papers
- SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Feature Noise Boosts DNN Generalization under Label Noise [65.36889005555669]
The presence of label noise in the training data has a profound impact on the generalization of deep neural networks (DNNs)
In this study, we introduce and theoretically demonstrate a simple feature noise method, which directly adds noise to the features of training data.
arXiv Detail & Related papers (2023-08-03T08:31:31Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Weak-signal extraction enabled by deep-neural-network denoising of
diffraction data [26.36525764239897]
We show how data can be denoised via a deep convolutional neural network.
We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data.
arXiv Detail & Related papers (2022-09-19T14:43:01Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
We propose a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input.
The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals.
arXiv Detail & Related papers (2021-09-18T14:51:24Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
It is impossible to collect enough data to learn all types of faults from a machine.
New algorithms, trained using data from healthy conditions only, were developed to perform unsupervised anomaly detection.
A key issue in the development of these algorithms is the noise in the signals, as it impacts the anomaly detection performance.
arXiv Detail & Related papers (2021-07-20T14:06:50Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.