Tsang's resolution enhancement method for imaging with focused illumination
- URL: http://arxiv.org/abs/2405.20979v1
- Date: Fri, 31 May 2024 16:25:05 GMT
- Title: Tsang's resolution enhancement method for imaging with focused illumination
- Authors: Alexander Duplinskiy, Jernej Frank, Kaden Bearne, A. I. Lvovsky,
- Abstract summary: We experimentally demonstrate superior lateral resolution and enhanced image quality compared to either method alone.
This result paves the way for integrating spatial demultiplexing into existing microscopes.
- Score: 42.41481706562645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A widely tested approach to overcoming the diffraction limit in microscopy without disturbing the sample relies on substituting widefield sample illumination with a structured light beam. This gives rise to confocal, image-scanning and structured-illumination microscopy methods. On the other hand, as shown recently by Tsang and others, subdiffractional resolution at the detection end of the microscope can be achieved by replacing the intensity measurement in the image plane with spatial mode demultiplexing. In this work we study the combined action of Tsang's method with image scanning. We experimentally demonstrate superior lateral resolution and enhanced image quality compared to either method alone. This result paves the way for integrating spatial demultiplexing into existing microscopes, contributing to further pushing the boundaries of optical resolution.
Related papers
- Deep Learning Enables Large Depth-of-Field Images for
Sub-Diffraction-Limit Scanning Superlens Microscopy [16.152554659134246]
We use deep learning to obtain the mapping relationship between optical super-resolution (OSR) images and scanning electron microscopy domain images.
The proposed method provides a high level of detail in the reconstructed results, indicating that it has broad applicability to chip-level defect detection, biological sample analysis, forensics, and various other fields.
arXiv Detail & Related papers (2023-10-27T09:16:56Z) - Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction [65.5397271106534]
A single neural network is difficult to handle all exposure problems.
In particular, convolutions hinder the ability to restore faithful color or details on extremely over-/under- exposed regions.
We propose a Macro-Micro-Hierarchical transformer, which consists of a macro attention to capture long-range dependencies, a micro attention to extract local features, and a hierarchical structure for coarse-to-fine correction.
arXiv Detail & Related papers (2023-09-02T09:07:36Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Computational ghost imaging for transmission electron microscopy [4.8776835876287805]
We explore using computational ghost imaging techniques in electron microscopy to reduce the total required intensity.
The technological lack of the equivalent high-resolution, optical spatial light modulator for electrons means that a different approach needs to be pursued.
We show a beam shaping technique based on the use of a distribution of electrically charged metal needles to structure the beam, alongside a novel reconstruction method to handle the resulting highly non-orthogonal patterns.
arXiv Detail & Related papers (2022-04-21T09:43:54Z) - Incorporating Texture Information into Dimensionality Reduction for
High-Dimensional Images [65.74185962364211]
We present a method for incorporating neighborhood information into distance-based dimensionality reduction methods.
Based on a classification of different methods for comparing image patches, we explore a number of different approaches.
arXiv Detail & Related papers (2022-02-18T13:17:43Z) - Light-field microscopy with correlated beams for extended volumetric
imaging at the diffraction limit [0.0]
We propose and experimentally demonstrate a light-field microscopy architecture based on light intensity correlation.
We demonstrate the effectiveness of our technique in refocusing three-dimensional test targets and biological samples out of the focused plane.
arXiv Detail & Related papers (2021-10-02T13:54:11Z) - Axial-to-lateral super-resolution for 3D fluorescence microscopy using
unsupervised deep learning [19.515134844947717]
We present a deep-learning-enabled unsupervised super-resolution technique that enhances anisotropic images in fluorescence microscopy.
Our method greatly reduces the effort to put into practice as the training of a network requires as little as a single 3D image stack.
We demonstrate that the trained network not only enhances axial resolution beyond the diffraction limit, but also enhances suppressed visual details between the imaging planes and removes imaging artifacts.
arXiv Detail & Related papers (2021-04-19T16:31:12Z) - Correlation Plenoptic Imaging between Arbitrary Planes [52.77024349608834]
We show that the protocol enables to change the focused planes, in post-processing, and to achieve an unprecedented combination of image resolution and depth of field.
Results lead the way towards the development of compact designs for correlation plenoptic imaging devices based on chaotic light, as well as high-SNR plenoptic imaging devices based on entangled photon illumination.
arXiv Detail & Related papers (2020-07-23T14:26:14Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.