Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction
- URL: http://arxiv.org/abs/2309.00872v2
- Date: Mon, 18 Dec 2023 03:21:38 GMT
- Title: Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction
- Authors: Gehui Li, Jinyuan Liu, Long Ma, Zhiying Jiang, Xin Fan, Risheng Liu
- Abstract summary: A single neural network is difficult to handle all exposure problems.
In particular, convolutions hinder the ability to restore faithful color or details on extremely over-/under- exposed regions.
We propose a Macro-Micro-Hierarchical transformer, which consists of a macro attention to capture long-range dependencies, a micro attention to extract local features, and a hierarchical structure for coarse-to-fine correction.
- Score: 65.5397271106534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photographs taken with less-than-ideal exposure settings often display poor
visual quality. Since the correction procedures vary significantly, it is
difficult for a single neural network to handle all exposure problems.
Moreover, the inherent limitations of convolutions, hinder the models ability
to restore faithful color or details on extremely over-/under- exposed regions.
To overcome these limitations, we propose a Macro-Micro-Hierarchical
transformer, which consists of a macro attention to capture long-range
dependencies, a micro attention to extract local features, and a hierarchical
structure for coarse-to-fine correction. In specific, the complementary
macro-micro attention designs enhance locality while allowing global
interactions. The hierarchical structure enables the network to correct
exposure errors of different scales layer by layer. Furthermore, we propose a
contrast constraint and couple it seamlessly in the loss function, where the
corrected image is pulled towards the positive sample and pushed away from the
dynamically generated negative samples. Thus the remaining color distortion and
loss of detail can be removed. We also extend our method as an image enhancer
for low-light face recognition and low-light semantic segmentation. Experiments
demonstrate that our approach obtains more attractive results than
state-of-the-art methods quantitatively and qualitatively.
Related papers
- OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction [15.884868711123993]
We propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network.
OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain.
We develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior.
arXiv Detail & Related papers (2024-11-22T08:54:16Z) - Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
Enhancing low-light images while maintaining natural colors is a challenging problem due to camera processing variations.
We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs.
We achieve that by introducing a convolutional mixture density network that generates distorted colors of the scene based on the illumination differences.
arXiv Detail & Related papers (2023-10-14T17:59:46Z) - CNN Injected Transformer for Image Exposure Correction [20.282217209520006]
Previous exposure correction methods based on convolutions often produce exposure deviation in images.
We propose a CNN Injected Transformer (CIT) to harness the individual strengths of CNN and Transformer simultaneously.
In addition to the hybrid architecture design for exposure correction, we apply a set of carefully formulated loss functions to improve the spatial coherence and rectify potential color deviations.
arXiv Detail & Related papers (2023-09-08T14:53:00Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - CuDi: Curve Distillation for Efficient and Controllable Exposure
Adjustment [86.97592472794724]
We present Curve Distillation, CuDi, for efficient and controllable exposure adjustment without the requirement of paired or unpaired data.
Our method inherits the zero-reference learning and curve-based framework from an effective low-light image enhancement method, Zero-DCE.
We show that our method is appealing for its fast, robust, and flexible performance, outperforming state-of-the-art methods in real scenes.
arXiv Detail & Related papers (2022-07-28T17:53:46Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
We propose to leverage the invertible network to enhance low-light image in forward process and degrade the normal-light one inversely with unpaired learning.
In addition to the adversarial loss, we design various loss functions to ensure the stability of training and preserve more image details.
We present a progressive self-guided enhancement process for low-light images and achieve favorable performance against the SOTAs.
arXiv Detail & Related papers (2021-12-24T17:00:54Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.