Bayesian Design Principles for Offline-to-Online Reinforcement Learning
- URL: http://arxiv.org/abs/2405.20984v1
- Date: Fri, 31 May 2024 16:31:07 GMT
- Title: Bayesian Design Principles for Offline-to-Online Reinforcement Learning
- Authors: Hao Hu, Yiqin Yang, Jianing Ye, Chengjie Wu, Ziqing Mai, Yujing Hu, Tangjie Lv, Changjie Fan, Qianchuan Zhao, Chongjie Zhang,
- Abstract summary: offline-to-online fine-tuning is crucial for real-world applications where exploration can be costly or unsafe.
In this paper, we tackle the dilemma of offline-to-online fine-tuning: if the agent remains pessimistic, it may fail to learn a better policy, while if it becomes optimistic directly, performance may suffer from a sudden drop.
We show that Bayesian design principles are crucial in solving such a dilemma.
- Score: 50.97583504192167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning (RL) is crucial for real-world applications where exploration can be costly or unsafe. However, offline learned policies are often suboptimal, and further online fine-tuning is required. In this paper, we tackle the fundamental dilemma of offline-to-online fine-tuning: if the agent remains pessimistic, it may fail to learn a better policy, while if it becomes optimistic directly, performance may suffer from a sudden drop. We show that Bayesian design principles are crucial in solving such a dilemma. Instead of adopting optimistic or pessimistic policies, the agent should act in a way that matches its belief in optimal policies. Such a probability-matching agent can avoid a sudden performance drop while still being guaranteed to find the optimal policy. Based on our theoretical findings, we introduce a novel algorithm that outperforms existing methods on various benchmarks, demonstrating the efficacy of our approach. Overall, the proposed approach provides a new perspective on offline-to-online RL that has the potential to enable more effective learning from offline data.
Related papers
- Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm.
Our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy.
arXiv Detail & Related papers (2024-06-26T15:59:13Z) - Offline Retraining for Online RL: Decoupled Policy Learning to Mitigate
Exploration Bias [96.14064037614942]
offline retraining, a policy extraction step at the end of online fine-tuning, is proposed.
An optimistic (exploration) policy is used to interact with the environment, and a separate pessimistic (exploitation) policy is trained on all the observed data for evaluation.
arXiv Detail & Related papers (2023-10-12T17:50:09Z) - Finetuning from Offline Reinforcement Learning: Challenges, Trade-offs
and Practical Solutions [30.050083797177706]
offline reinforcement learning (RL) allows for the training of competent agents from offline datasets without any interaction with the environment.
Online finetuning of such offline models can further improve performance.
We show that it is possible to use standard online off-policy algorithms for faster improvement.
arXiv Detail & Related papers (2023-03-30T14:08:31Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Benchmarks and Algorithms for Offline Preference-Based Reward Learning [41.676208473752425]
We propose an approach that uses an offline dataset to craft preference queries via pool-based active learning.
Our proposed approach does not require actual physical rollouts or an accurate simulator for either the reward learning or policy optimization steps.
arXiv Detail & Related papers (2023-01-03T23:52:16Z) - Offline RL Policies Should be Trained to be Adaptive [89.8580376798065]
We show that acting optimally in offline RL in a Bayesian sense involves solving an implicit POMDP.
As a result, optimal policies for offline RL must be adaptive, depending not just on the current state but rather all the transitions seen so far during evaluation.
We present a model-free algorithm for approximating this optimal adaptive policy, and demonstrate the efficacy of learning such adaptive policies in offline RL benchmarks.
arXiv Detail & Related papers (2022-07-05T17:58:33Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
We propose a model-based Offline-to-Online Reinforcement learning (MOORe) algorithm.
Experiment results show that our algorithm smoothly transfers from offline to online stages while enabling sample-efficient online adaption.
arXiv Detail & Related papers (2022-01-25T03:14:57Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.