G-Transformer for Conditional Average Potential Outcome Estimation over Time
- URL: http://arxiv.org/abs/2405.21012v2
- Date: Fri, 04 Oct 2024 12:50:11 GMT
- Title: G-Transformer for Conditional Average Potential Outcome Estimation over Time
- Authors: Konstantin Hess, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel,
- Abstract summary: The G-transformer (GT) is a novel, neural end-to-end model which adjusts for time-varying confounders.
Our GT is the first neural model to perform regression-based iterative G-computation for CAPOs in the time-varying setting.
- Score: 25.068617118126824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating potential outcomes for treatments over time based on observational data is important for personalized decision-making in medicine. Yet, existing neural methods for this task either (1) do not perform proper adjustments for time-varying confounders, or (2) suffer from large estimation variance. In order to address both limitations, we introduce the G-transformer (GT). Our GT is a novel, neural end-to-end model which adjusts for time-varying confounders, and provides low-variance estimation of conditional average potential outcomes (CAPOs) over time. Specifically, our GT is the first neural model to perform regression-based iterative G-computation for CAPOs in the time-varying setting. We evaluate the effectiveness of our GT across various experiments. In sum, this work represents a significant step towards personalized decision-making from electronic health records.
Related papers
- Adaptive Sampling to Reduce Epistemic Uncertainty Using Prediction Interval-Generation Neural Networks [0.0]
This paper presents an adaptive sampling approach designed to reduce epistemic uncertainty in predictive models.
Our primary contribution is the development of a metric that estimates potential epistemic uncertainty.
A batch sampling strategy based on Gaussian processes (GPs) is also proposed.
We test our approach on three unidimensional synthetic problems and a multi-dimensional dataset based on an agricultural field for selecting experimental fertilizer rates.
arXiv Detail & Related papers (2024-12-13T21:21:47Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - G-Transformer: Counterfactual Outcome Prediction under Dynamic and Time-varying Treatment Regimes [29.250837221920925]
We present G-Transformer for counterfactual outcome prediction under dynamic and time-varying treatment strategies.
Our approach leverages a Transformer architecture to capture complex, long-range dependencies in time-varying covariates.
G-Transformer outperforms both classical and state-of-the-art counterfactual prediction models in these settings.
arXiv Detail & Related papers (2024-06-08T16:04:33Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing.
We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes.
We address the challenges posed by time-varying effects and unobserved adjustment variables.
arXiv Detail & Related papers (2023-10-16T16:32:35Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
This paper investigates the feasibility of employing state-of-the-art probabilistic transformers in Bayesian optimisation.
We observe two drawbacks stemming from their training procedure and loss definition, hindering their direct deployment as proxies in black-box optimisation.
We introduce two components: 1) a BO-tailored training prior supporting non-uniformly distributed points, and 2) a novel approximate posterior regulariser trading-off accuracy and input sensitivity to filter favourable stationary points for improved predictive performance.
arXiv Detail & Related papers (2022-05-27T11:13:17Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long
Follow-up Time [28.11470886127216]
Causal effect estimation for dynamic treatment regimes (DTRs) contributes to sequential decision making.
We combine outcome regression models with treatment models for high dimensional features using uncensored subjects that are small in sample size.
Also, the developed deep Bayesian models can model uncertainty and output the prediction variance which is essential for the safety-aware applications, such as self-driving cars and medical treatment design.
arXiv Detail & Related papers (2021-09-20T13:21:39Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - G-Net: A Deep Learning Approach to G-computation for Counterfactual
Outcome Prediction Under Dynamic Treatment Regimes [11.361895456942374]
G-computation is a method for estimating expected counterfactual outcomes under dynamic time-varying treatment strategies.
This paper introduces G-Net, a novel sequential deep learning framework for G-computation.
We evaluate alternative G-Net implementations using realistically complex temporal simulated data obtained from CVSim.
arXiv Detail & Related papers (2020-03-23T21:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.