Table-top nanodiamond interferometer enabling quantum gravity tests
- URL: http://arxiv.org/abs/2405.21029v1
- Date: Fri, 31 May 2024 17:20:59 GMT
- Title: Table-top nanodiamond interferometer enabling quantum gravity tests
- Authors: Marta Vicentini, Ettore Bernardi, Ekaterina Moreva, Fabrizio Piacentini, Carmine Napoli, Ivo Pietro Degiovanni, Alessandra Manzin, Marco Genovese,
- Abstract summary: We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
- Score: 34.82692226532414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unifying quantum theory and general relativity is the holy grail of contemporary physics. Nonetheless, the lack of experimental evidence driving this process led to a plethora of mathematical models with a substantial impossibility of discriminating among them or even establishing if gravity really needs to be quantized or if, vice versa, quantum mechanics must be "gravitized" at some scale. Recently, it has been proposed that the observation of the generation of entanglement by gravitational interaction, could represent a breakthrough demonstrating the quantum nature of gravity. A few experimental proposals have been advanced in this sense, but the extreme technological requirements (e.g., the need for free-falling gravitationally-interacting masses in a quantum superposition state) make their implementation still far ahead. Here we present a feasibility study for a table-top nanodiamond-based interferometer eventually enabling easier and less resource-demanding quantum gravity tests. With respect to the aforementioned proposals, by relying on quantum superpositions of steady massive (mesoscopic) objects our interferometer may allow exploiting just small-range electromagnetic fields (much easier to implement and control) and, at the same time, the re-utilization of the massive quantum probes exploited, inevitably lost in free-falling interferometric schemes.
Related papers
- Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Massive quantum systems as interfaces of quantum mechanics and gravity [0.0]
The traditional view from particle physics is that quantum gravity effects should only become detectable at extremely high energies and small length scales.
In recent decades, the size and mass of quantum systems that can be controlled in the laboratory have reached unprecedented scales.
This review focuses on proposals where massive quantum systems act as interfaces between quantum mechanics and gravity.
arXiv Detail & Related papers (2023-11-15T18:58:44Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Proof-of-concept Quantum Simulator based on Molecular Spin Qudits [39.28601213393797]
We show the first prototype quantum simulator based on an ensemble of molecular qudits and a radiofrequency broadband spectrometer.
Results represent an important step towards the actual use of molecular spin qudits in quantum technologies.
arXiv Detail & Related papers (2023-09-11T16:33:02Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Quantum Discord Witness with Uncharacterized Devices [18.751513188036334]
We propose a new approach using uncharacterized measurements to witness quantum discord of an unknown bipartite state within arbitrary dimension system.
The feature of high robustness against device imperfections, such as loss-tolerance and error-tolerance, shows our method is experimentally feasible.
arXiv Detail & Related papers (2023-03-20T14:51:53Z) - Complementarity-Entanglement Tradeoff in Quantum Gravity [0.0]
Quantization of the gravity remains one of the most important, yet extremely illusive, challenges at the heart of modern physics.
Recently, it has been discovered that gravitationally-induced entanglement, tailored in the interferometric frameworks, can be used to witness the quantum nature of the gravity.
arXiv Detail & Related papers (2022-05-04T09:34:10Z) - Probing the Quantum Nature of Gravity in the Microgravity of Space [0.0]
We lay out the science case for furthering a community effort to study and lead progress in both theoretical and experimental aspects for space-based tests of fundamental physics.
Recent advances at the intersection of quantum information and gravity, along with quantum technologies, indicate that such tests may well be within reach of upcoming experimental capabilities.
arXiv Detail & Related papers (2021-11-02T16:24:37Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.