Simulation of Collective Neutrino Oscillations on a Quantum Computer
- URL: http://arxiv.org/abs/2102.12556v1
- Date: Wed, 24 Feb 2021 20:51:25 GMT
- Title: Simulation of Collective Neutrino Oscillations on a Quantum Computer
- Authors: Benjamin Hall, Alessandro Roggero, Alessandro Baroni, Joseph Carlson
- Abstract summary: We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
- Score: 117.44028458220427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In astrophysical scenarios with large neutrino density, like supernovae and
the early universe, the presence of neutrino-neutrino interactions can give
rise to collective flavor oscillations in the out-of-equilibrium collective
dynamics of a neutrino cloud. The role of quantum correlations in these
phenomena is not yet well understood, in large part due to complications in
solving for the real-time evolution of the strongly coupled many-body system.
Future fault-tolerant quantum computers hold the promise to overcome much of
these limitations and provide direct access to the correlated neutrino dynamic.
In this work, we present the first simulation of a small system of interacting
neutrinos using current generation quantum devices. We introduce a strategy to
overcome limitations in the natural connectivity of the qubits and use it to
track the evolution of entanglement in real-time. The results show the critical
importance of error-mitigation techniques to extract meaningful results for
entanglement measures using noisy, near term, quantum devices.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum Spread Complexity in Neutrino Oscillations [0.0]
We use quantum complexity formalism as an alternate measure to study neutrino oscillations.
In particular, quantum spread complexity revealed additional information on the violation of charge-parity symmetry in the neutrino sector.
arXiv Detail & Related papers (2023-05-26T15:34:31Z) - Stabilization of Discrete Time-Crystaline Response on a Superconducting Quantum Computer by increasing the Interaction Range [0.0]
We present the outcomes of a digital quantum simulation where we overcome the limitations of the qubit connectivity in NISQ devices.
We demonstrate how to implement couplings among physically disconnected qubits at the cost of increasing the circuit depth.
arXiv Detail & Related papers (2023-05-23T18:00:12Z) - Open system approach to Neutrino oscillations in a quantum walk
framework [3.0715281567279153]
We study the problem of simulating neutrino oscillation from the perspective of open quantum systems.
We establish a connection between the dynamics of reduced coin state and neutrino phenomenology.
We have also studied the behavior of linear entropy as a measure of entanglement between different flavors in the same framework.
arXiv Detail & Related papers (2023-05-23T10:51:08Z) - Quantum information and quantum simulation of neutrino physics [0.0]
neutrinos play a major role in driving dynamical and microphysical phenomena.
In extreme astrophysical environments such as supernovae and binary neutron star mergers, neutrinos play a major role in driving various dynamical and microphysical phenomena.
arXiv Detail & Related papers (2023-05-02T01:55:03Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.