Quantum state preparation for multivariate functions
- URL: http://arxiv.org/abs/2405.21058v1
- Date: Fri, 31 May 2024 17:49:27 GMT
- Title: Quantum state preparation for multivariate functions
- Authors: Matthias Rosenkranz, Eric Brunner, Gabriel Marin-Sanchez, Nathan Fitzpatrick, Silas Dilkes, Yao Tang, Yuta Kikuchi, Marcello Benedetti,
- Abstract summary: We develop protocols for preparing quantum states whose amplitudes encode multivariate functions.
We analyze requirements both pragmatically and in terms of near/medium-term resources.
We use 24 qubits and up to 237 two-qubit gates on the Quantinuum H2-1 trapped-ion quantum processor.
- Score: 2.344936782036958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fundamental step of any quantum algorithm is the preparation of qubit registers in a suitable initial state. Often qubit registers represent a discretization of continuous variables and the initial state is defined by a multivariate function. We develop protocols for preparing quantum states whose amplitudes encode multivariate functions by linearly combining block-encodings of Fourier and Chebyshev basis functions. Without relying on arithmetic circuits, quantum Fourier transforms, or multivariate quantum signal processing, our algorithms are simpler and more effective than previous proposals. We analyze requirements both asymptotically and pragmatically in terms of near/medium-term resources. Numerically, we prepare bivariate Student's t-distributions, 2D Ricker wavelets and electron wavefunctions in a 3D Coulomb potential, which are initial states with potential applications in finance, physics and chemistry simulations. Finally, we prepare bivariate Gaussian distributions on the Quantinuum H2-1 trapped-ion quantum processor using 24 qubits and up to 237 two-qubit gates.
Related papers
- Efficient state preparation for multivariate Monte Carlo simulation [0.8009842832476994]
Quantum state preparation is a task to prepare a state with a specific function encoded in the amplitude.
We propose a quantum algorithm that only requires the number of gates linear in $D$.
arXiv Detail & Related papers (2024-09-11T15:16:35Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Quantum state preparation for bell-shaped probability distributions using deconvolution methods [0.0]
We present a hybrid classical-quantum approach to load quantum data.
We use the Jensen-Shannon distance as the cost function to quantify the closeness of the outcome from the classical step and the target distribution.
The output from the deconvolution step is used to construct the quantum circuit required to load the given probability distribution.
arXiv Detail & Related papers (2023-10-08T06:55:47Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Stochastic emulation of quantum algorithms [0.0]
We introduce higher-order partial derivatives of a probability distribution of particle positions as a new object that shares basic properties of quantum mechanical states needed for a quantum algorithm.
We prove that the propagation via the map built from those universal maps reproduces up to a prefactor exactly the evolution of the quantum mechanical state.
We implement several well-known quantum algorithms, analyse the scaling of the needed number of realizations with the number of qubits, and highlight the role of destructive interference for the cost of emulation.
arXiv Detail & Related papers (2021-09-16T07:54:31Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Quantum state preparation with multiplicative amplitude transduction [0.0]
Two variants of the algorithm with different emphases are introduced.
One variant uses fewer qubits and no controlled gates, while the other variant potentially requires fewer gates overall.
A general analysis is given to estimate the number of qubits necessary to achieve a desired precision in the amplitudes of the computational basis states.
arXiv Detail & Related papers (2020-06-01T14:36:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.