An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer
- URL: http://arxiv.org/abs/2206.03053v2
- Date: Mon, 27 Jun 2022 08:29:54 GMT
- Title: An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer
- Authors: Jonas Koppe, Mark-Oliver Wolf
- Abstract summary: We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modelling non-linear activation functions on quantum computers is vital for
quantum neurons employed in fully quantum neural networks, however, remains a
challenging task. We introduce an amplitude-based implementation for
approximating non-linearity in the form of the unit step function on a quantum
computer. Our approach expands upon repeat-until-success protocols, suggesting
a modification that requires a single measurement only. We describe two
distinct circuit types which receive their input either directly from a
classical computer, or as a quantum state when embedded in a more advanced
quantum algorithm. All quantum circuits are theoretically evaluated using
numerical simulation and executed on Noisy Intermediate-Scale Quantum hardware.
We demonstrate that reliable experimental data with high precision can be
obtained from our quantum circuits involving up to 8 qubits, and up to 25
CX-gate applications, enabled by state-of-the-art hardware-optimization
techniques and measurement error mitigation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Towards Quantum Simulations in Particle Physics and Beyond on Noisy
Intermediate-Scale Quantum Devices [1.7242431149740054]
We review two algorithmic advances that bring us closer to reliable quantum simulations of model systems in high energy physics.
The first method is the dimensional expressivity analysis of quantum circuits, which allows for constructing minimal but maximally expressive quantum circuits.
The second method is an efficient mitigation of readout errors on quantum devices.
arXiv Detail & Related papers (2021-10-07T22:13:37Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum process tomography with unsupervised learning and tensor
networks [0.0]
We present a new technique for performing quantum process tomography.
We combine a tensor network representation of the channel with a data-driven optimization inspired by unsupervised machine learning.
Our results go far beyond state-of-the-art, providing a practical and timely tool for benchmarking quantum circuits in current and near-term quantum computers.
arXiv Detail & Related papers (2020-06-03T17:54:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.