Mixed Diffusion for 3D Indoor Scene Synthesis
- URL: http://arxiv.org/abs/2405.21066v2
- Date: Mon, 09 Dec 2024 22:33:30 GMT
- Title: Mixed Diffusion for 3D Indoor Scene Synthesis
- Authors: Siyi Hu, Diego Martin Arroyo, Stephanie Debats, Fabian Manhardt, Luca Carlone, Federico Tombari,
- Abstract summary: We present MiDiffusion, a novel mixed discrete-continuous diffusion model designed to synthesize plausible 3D indoor scenes.<n>We show it outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis.
- Score: 55.94569112629208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating realistic 3D scenes is an area of growing interest in computer vision and robotics. However, creating high-quality, diverse synthetic 3D content often requires expert intervention, making it costly and complex. Recently, efforts to automate this process with learning techniques, particularly diffusion models, have shown significant improvements in tasks like furniture rearrangement. However, applying diffusion models to floor-conditioned indoor scene synthesis remains under-explored. This task is especially challenging as it requires arranging objects in continuous space while selecting from discrete object categories, posing unique difficulties for conventional diffusion methods. To bridge this gap, we present MiDiffusion, a novel mixed discrete-continuous diffusion model designed to synthesize plausible 3D indoor scenes given a floor plan and pre-arranged objects. We represent a scene layout by a 2D floor plan and a set of objects, each defined by category, location, size, and orientation. Our approach uniquely applies structured corruption across mixed discrete semantic and continuous geometric domains, resulting in a better-conditioned problem for denoising. Evaluated on the 3D-FRONT dataset, MiDiffusion outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis. Additionally, it effectively handles partial object constraints via a corruption-and-masking strategy without task-specific training, demonstrating advantages in scene completion and furniture arrangement tasks.
Related papers
- CasaGPT: Cuboid Arrangement and Scene Assembly for Interior Design [35.11283253765395]
We present a novel approach for indoor scene synthesis, which learns to arrange decomposed cuboid primitives to represent 3D objects within a scene.
Our approach, coined CasaGPT for Cuboid Arrangement and Scene Assembly, employs an autoregressive model to sequentially arrange cuboids, producing physically plausible scenes.
arXiv Detail & Related papers (2025-04-28T04:35:04Z) - HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation [50.206100327643284]
HiScene is a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation.
We generate 3D content that aligns with 2D representations while maintaining compositional structure.
arXiv Detail & Related papers (2025-04-17T16:33:39Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.
Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.
We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - DeBaRA: Denoising-Based 3D Room Arrangement Generation [22.96293773013579]
We introduce DeBaRA, a score-based model specifically tailored for precise, controllable and flexible arrangement generation in a bounded environment.
We demonstrate that by focusing on spatial attributes of objects, a single trained DeBaRA model can be leveraged at test time to perform several downstream applications such as scene synthesis, completion and re-arrangement.
arXiv Detail & Related papers (2024-09-26T23:18:25Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Object-level Scene Deocclusion [92.39886029550286]
We present a new self-supervised PArallel visible-to-COmplete diffusion framework, named PACO, for object-level scene deocclusion.
To train PACO, we create a large-scale dataset with 500k samples to enable self-supervised learning.
Experiments on COCOA and various real-world scenes demonstrate the superior capability of PACO for scene deocclusion, surpassing the state of the arts by a large margin.
arXiv Detail & Related papers (2024-06-11T20:34:10Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - DiffuScene: Denoising Diffusion Models for Generative Indoor Scene
Synthesis [44.521452102413534]
We present DiffuScene for indoor 3D scene synthesis based on a novel scene configuration denoising diffusion model.
It generates 3D instance properties stored in an unordered object set and retrieves the most similar geometry for each object configuration.
arXiv Detail & Related papers (2023-03-24T18:00:15Z) - Diffusion-based Generation, Optimization, and Planning in 3D Scenes [89.63179422011254]
We introduce SceneDiffuser, a conditional generative model for 3D scene understanding.
SceneDiffuser is intrinsically scene-aware, physics-based, and goal-oriented.
We show significant improvements compared with previous models.
arXiv Detail & Related papers (2023-01-15T03:43:45Z) - ATISS: Autoregressive Transformers for Indoor Scene Synthesis [112.63708524926689]
We present ATISS, a novel autoregressive transformer architecture for creating synthetic indoor environments.
We argue that this formulation is more natural, as it makes ATISS generally useful beyond fully automatic room layout synthesis.
Our model is trained end-to-end as an autoregressive generative model using only labeled 3D bounding boxes as supervision.
arXiv Detail & Related papers (2021-10-07T17:58:05Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.