論文の概要: Code Pretraining Improves Entity Tracking Abilities of Language Models
- arxiv url: http://arxiv.org/abs/2405.21068v1
- Date: Fri, 31 May 2024 17:56:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 13:09:46.677644
- Title: Code Pretraining Improves Entity Tracking Abilities of Language Models
- Title(参考訳): Code Pretrainingは、言語モデルのエンティティ追跡能力を改善する
- Authors: Najoung Kim, Sebastian Schuster, Shubham Toshniwal,
- Abstract要約: 大量のコードでトレーニングされたモデルがベースモデルより優れているという明確な証拠が得られます。
一方、様々なモデルファミリをまたいだ算術訓練やアライメントチューニングの相反する利点は見つからない。
- 参考スコア(独自算出の注目度): 20.6768931196215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has provided indirect evidence that pretraining language models on code improves the ability of models to track state changes of discourse entities expressed in natural language. In this work, we systematically test this claim by comparing pairs of language models on their entity tracking performance. Critically, the pairs consist of base models and models trained on top of these base models with additional code data. We extend this analysis to additionally examine the effect of math training, another highly structured data type, and alignment tuning, an important step for enhancing the usability of models. We find clear evidence that models additionally trained on large amounts of code outperform the base models. On the other hand, we find no consistent benefit of additional math training or alignment tuning across various model families.
- Abstract(参考訳): 最近の研究は、コード上で事前学習された言語モデルが、自然言語で表現された会話エンティティの状態変化を追跡する能力を改善するという間接的な証拠を提供している。
本研究では,言語モデルとエンティティ追跡性能を比較することで,この主張を体系的に検証する。
重要な点として、これらのペアはベースモデルと、これらのベースモデル上でトレーニングされたモデルと、追加のコードデータで構成されている。
この分析を拡張して、モデルの有用性を高めるための重要なステップである、別の高度に構造化されたデータ型、アライメントチューニング(アライメントチューニング)の効果をさらに調べる。
大量のコードでトレーニングされたモデルがベースモデルより優れているという明確な証拠が得られます。
一方、様々なモデルファミリにまたがる追加の数学訓練やアライメントチューニングによる一貫した利点は見つからない。
関連論文リスト
- Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
クロアチア語、セルビア語、ボスニア語、モンテネグロ語のベンチマークを設定しました。
我々は、利用可能な多言語モデルの追加事前学習により、専用のin-scratchモデルに匹敵する性能が得られることを示す。
また、Slovenianの場合、隣接する言語は、最終モデルの性能にほとんど、あるいは全く損なわない追加の事前訓練に含めることができることを示す。
論文 参考訳(メタデータ) (2024-04-08T11:55:44Z) - Collaborative decoding of critical tokens for boosting factuality of
large language models [57.504894664689]
微調整および整列モデルでは、命令追従と安全な生成の能力が改善されている。
世代ごとのサンプリングの一般的な実践は、幻覚の確率を増大させる。
我々は、クリティカルトークンの概念を通じて、事前訓練されたモデル内の高い事実性を活用するための協調的復号化フレームワークを導入する。
論文 参考訳(メタデータ) (2024-02-28T01:53:37Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
サブワードベースのモデルは、多くの設定において依然として最も実用的な選択肢であることを示している。
我々は,新しいモデルを設計し,評価する際のこれらの要因を検討するために,トークンフリーな手法の今後の取り組みを奨励する。
論文 参考訳(メタデータ) (2022-10-13T15:47:09Z) - Interpreting Language Models Through Knowledge Graph Extraction [42.97929497661778]
BERTに基づく言語モデルを,学習過程の逐次的な段階において取得した知識のスナップショットを通じて比較する。
本稿では, クローズイン・ザ・ブランク文から知識グラフを抽出し, 知識獲得のタイムラインを提示する手法を提案する。
この分析を, BERTモデル(DistilBERT, BERT-base, RoBERTa)の事前学習変化の比較に拡張する。
論文 参考訳(メタデータ) (2021-11-16T15:18:01Z) - How much pretraining data do language models need to learn syntax? [12.668478784932878]
トランスフォーマーに基づく事前訓練型言語モデルは、多くのよく知られたNLUベンチマークにおいて優れた結果を得る。
本稿では,RoBERTaを用いたモデル知識に対する事前学習データサイズの影響について検討する。
論文 参考訳(メタデータ) (2021-09-07T15:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。