EnterpriseEM: Fine-tuned Embeddings for Enterprise Semantic Search
- URL: http://arxiv.org/abs/2406.00010v2
- Date: Fri, 27 Sep 2024 12:19:43 GMT
- Title: EnterpriseEM: Fine-tuned Embeddings for Enterprise Semantic Search
- Authors: Kamalkumar Rathinasamy, Jayarama Nettar, Amit Kumar, Vishal Manchanda, Arun Vijayakumar, Ayush Kataria, Venkateshprasanna Manjunath, Chidambaram GS, Jaskirat Singh Sodhi, Shoeb Shaikh, Wasim Akhtar Khan, Prashant Singh, Tanishq Dattatray Ige, Vipin Tiwari, Rajab Ali Mondal, Harshini K, S Reka, Chetana Amancharla, Faiz ur Rahman, Harikrishnan P A, Indraneel Saha, Bhavya Tiwary, Navin Shankar Patel, Pradeep T S, Balaji A J, Priyapravas, Mohammed Rafee Tarafdar,
- Abstract summary: We propose a methodology for contextualizing pre-trained embedding models to enterprise environments.
By adapting the embeddings to better suit the retrieval tasks prevalent in enterprises, we aim to enhance the performance of AI-driven information retrieval solutions.
- Score: 1.2097014193871654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprises grapple with the significant challenge of managing proprietary unstructured data, hindering efficient information retrieval. This has led to the emergence of AI-driven information retrieval solutions, designed to adeptly extract relevant insights to address employee inquiries. These solutions often leverage pre-trained embedding models and generative models as foundational components. While pre-trained embeddings may exhibit proximity or disparity based on their original training objectives, they might not fully align with the unique characteristics of enterprise-specific data, leading to suboptimal alignment with the retrieval goals of enterprise environments. In this paper, we propose a comprehensive methodology for contextualizing pre-trained embedding models to enterprise environments, covering the entire process from data preparation to model fine-tuning and evaluation. By adapting the embeddings to better suit the retrieval tasks prevalent in enterprises, we aim to enhance the performance of information retrieval solutions. We discuss the process of fine-tuning, its effect on retrieval accuracy, and the potential benefits for enterprise information management. Our findings demonstrate the efficacy of fine-tuned embedding models in improving the precision and relevance of search results in enterprise settings.
Related papers
- From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models [9.380866972744633]
This work develops a holistic machine learning-to-unlearning framework, called Ensemble-based iTerative Information Distillation (ETID)
ETID incorporates a new ensemble learning method to build an accurate predictive model that can facilitate handling data erasure requests.
We also introduce an innovative distillation-based unlearning method tailored to the constructed ensemble model to enable efficient and effective data erasure.
arXiv Detail & Related papers (2024-11-26T05:42:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z) - Perona: Robust Infrastructure Fingerprinting for Resource-Efficient Big
Data Analytics [0.06524460254566904]
We present Perona, a novel approach to robust infrastructure fingerprinting for usage in big data analytics.
Perona employs common sets and configurations of benchmarking tools for target resources, so that resulting benchmark metrics are directly comparable and ranking is enabled.
We evaluate our approach both on data gathered from our own experiments as well as within related works for resource configuration optimization.
arXiv Detail & Related papers (2022-11-15T15:48:09Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
We introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making.
Our method is used for the data-efficient evaluation of the regret of past treatment assignments.
arXiv Detail & Related papers (2022-07-12T01:20:11Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Fix your Models by Fixing your Datasets [0.6058427379240697]
Current machine learning tools lack streamlined processes for improving the data quality.
We introduce a systematic framework for finding noisy or mislabelled samples in the dataset.
We demonstrate the efficacy of our framework on public as well as private enterprise datasets of two Fortune 500 companies.
arXiv Detail & Related papers (2021-12-15T02:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.