PTA: Enhancing Multimodal Sentiment Analysis through Pipelined Prediction and Translation-based Alignment
- URL: http://arxiv.org/abs/2406.00017v2
- Date: Thu, 13 Jun 2024 13:26:56 GMT
- Title: PTA: Enhancing Multimodal Sentiment Analysis through Pipelined Prediction and Translation-based Alignment
- Authors: Shezheng Song, Shasha Li, Shan Zhao, Chengyu Wang, Xiaopeng Li, Jie Yu, Qian Wan, Jun Ma, Tianwei Yan, Wentao Ma, Xiaoguang Mao,
- Abstract summary: Multimodal aspect-based sentiment analysis (MABSA) aims to understand opinions in a granular manner.
Traditionally, MABSA methods use a joint prediction approach to identify aspects and sentiments simultaneously.
We propose a pipeline framework that first predicts the aspect and then uses translation-based alignment (TBA) to enhance multimodal semantic consistency for better image utilization.
- Score: 17.70859235594373
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multimodal aspect-based sentiment analysis (MABSA) aims to understand opinions in a granular manner, advancing human-computer interaction and other fields. Traditionally, MABSA methods use a joint prediction approach to identify aspects and sentiments simultaneously. However, we argue that joint models are not always superior. Our analysis shows that joint models struggle to align relevant text tokens with image patches, leading to misalignment and ineffective image utilization. In contrast, a pipeline framework first identifies aspects through MATE (Multimodal Aspect Term Extraction) and then aligns these aspects with image patches for sentiment classification (MASC: Multimodal Aspect-Oriented Sentiment Classification). This method is better suited for multimodal scenarios where effective image use is crucial. We present three key observations: (a) MATE and MASC have different feature requirements, with MATE focusing on token-level features and MASC on sequence-level features; (b) the aspect identified by MATE is crucial for effective image utilization; and (c) images play a trivial role in previous MABSA methods due to high noise. Based on these observations, we propose a pipeline framework that first predicts the aspect and then uses translation-based alignment (TBA) to enhance multimodal semantic consistency for better image utilization. Our method achieves state-of-the-art (SOTA) performance on widely used MABSA datasets Twitter-15 and Twitter-17. This demonstrates the effectiveness of the pipeline approach and its potential to provide valuable insights for future MABSA research. For reproducibility, the code and checkpoint will be released.
Related papers
- Mind the Gap: Aligning Vision Foundation Models to Image Feature Matching [31.42132290162457]
We introduce a new framework called IMD (Image feature Matching with a pre-trained Diffusion model) with two parts.<n>Unlike the dominant solutions employing contrastive-learning based foundation models that emphasize global semantics, we integrate the generative-based diffusion models.<n>Our proposed IMD establishes a new state-of-the-art in commonly evaluated benchmarks, and the superior 12% improvement in IMIM indicates our method efficiently mitigates the misalignment.
arXiv Detail & Related papers (2025-07-14T14:28:15Z) - M3-AGIQA: Multimodal, Multi-Round, Multi-Aspect AI-Generated Image Quality Assessment [65.3860007085689]
M3-AGIQA is a comprehensive framework for AGI quality assessment.
It includes a structured multi-round evaluation mechanism, where intermediate image descriptions are generated.
Experiments conducted on multiple benchmark datasets demonstrate that M3-AGIQA achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-02-21T03:05:45Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.<n>We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.<n>We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - Multimodal Sentiment Analysis Based on BERT and ResNet [0.0]
multimodal sentiment analysis framework combining BERT and ResNet was proposed.
BERT has shown strong text representation ability in natural language processing, and ResNet has excellent image feature extraction performance in the field of computer vision.
Experimental results on the public dataset MAVA-single show that compared with the single-modal models that only use BERT or ResNet, the proposed multi-modal model improves the accuracy and F1 score, reaching the best accuracy of 74.5%.
arXiv Detail & Related papers (2024-12-04T15:55:20Z) - Shapley Value-based Contrastive Alignment for Multimodal Information Extraction [17.04865437165252]
We introduce a new paradigm of Image-Context-Text interaction.
We propose a novel Shapley Value-based Contrastive Alignment (Shap-CA) method.
Our method significantly outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-07-25T08:15:43Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - MVAM: Multi-View Attention Method for Fine-grained Image-Text Matching [65.87255122130188]
We propose a Multi-view Attention Method (MVAM) for image-text matching.
We also incorporate an objective to explicitly encourage attention heads to focus on distinct aspects of the input data.
Our method allows models to encode images and text from different perspectives and focus on more critical details, leading to better matching performance.
arXiv Detail & Related papers (2024-02-27T06:11:54Z) - PROMPT-IML: Image Manipulation Localization with Pre-trained Foundation
Models Through Prompt Tuning [35.39822183728463]
We present a novel Prompt-IML framework for detecting tampered images.
Humans tend to discern authenticity of an image based on semantic and high-frequency information.
Our model can achieve better performance on eight typical fake image datasets.
arXiv Detail & Related papers (2024-01-01T03:45:07Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
We propose a novel framework called DQPSA for multi-modal sentiment analysis.
PDQ module uses the prompt as both a visual query and a language query to extract prompt-aware visual information.
EPE module models the boundaries pairing of the analysis target from the perspective of an Energy-based Model.
arXiv Detail & Related papers (2023-12-13T12:00:46Z) - Novel OCT mosaicking pipeline with Feature- and Pixel-based registration [8.22581088888652]
We propose a versatile pipeline for stitching multi-view OCT/ OCTA textiten face projection images.
Our method combines the strengths of learning-based feature matching and robust pixel-based registration to align multiple images effectively.
The efficacy of our pipeline is validated using an in-house dataset and a large public dataset.
arXiv Detail & Related papers (2023-11-21T23:25:04Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Vision-Language Pre-Training for Multimodal Aspect-Based Sentiment
Analysis [25.482853330324748]
Multimodal Aspect-Based Sentiment Analysis (MABSA) has attracted increasing attention in recent years.
Previous approaches either (i) use separately pre-trained visual and textual models, which ignore the crossmodal alignment or (ii) use vision-grained models pre-trained with general pre-training tasks.
We propose a task-specific Vision-Language Pre-training framework for MABSA (MABSA), which is a unified multimodal encoder-decoder architecture for all the pretraining and downstream tasks.
arXiv Detail & Related papers (2022-04-17T08:44:00Z) - FILIP: Fine-grained Interactive Language-Image Pre-Training [106.19474076935363]
Fine-grained Interactive Language-Image Pre-training achieves finer-level alignment through a cross-modal late interaction mechanism.
We construct a new large-scale image-text pair dataset called FILIP300M for pre-training.
Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks.
arXiv Detail & Related papers (2021-11-09T17:15:38Z) - MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase
Grounding [74.33171794972688]
We present algorithms to model phrase-object relevance by leveraging fine-grained visual representations and visually-aware language representations.
Experiments conducted on the widely-adopted Flickr30k dataset show a significant improvement over existing weakly-supervised methods.
arXiv Detail & Related papers (2020-10-12T00:43:52Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.