論文の概要: A Novel Review of Stability Techniques for Improved Privacy-Preserving Machine Learning
- arxiv url: http://arxiv.org/abs/2406.00073v1
- Date: Fri, 31 May 2024 00:30:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:43:16.491776
- Title: A Novel Review of Stability Techniques for Improved Privacy-Preserving Machine Learning
- Title(参考訳): プライバシ保護機械学習の安定性向上のための新しい技術レビュー
- Authors: Coleman DuPlessie, Aidan Gao,
- Abstract要約: 機械学習モデルは、最近、サイズと人気が大幅に増加した。
データ漏洩に対処するため、さまざまなプライバシーフレームワークは、機械学習モデルの出力がトレーニングデータを損なわないことを保証している。
本稿では, 機械学習における民営化の悪影響を最小限に抑えるため, 安定性向上のための様々な手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models have recently enjoyed a significant increase in size and popularity. However, this growth has created concerns about dataset privacy. To counteract data leakage, various privacy frameworks guarantee that the output of machine learning models does not compromise their training data. However, this privatization comes at a cost by adding random noise to the training process, which reduces model performance. By making models more resistant to small changes in input and thus more stable, the necessary amount of noise can be decreased while still protecting privacy. This paper investigates various techniques to enhance stability, thereby minimizing the negative effects of privatization in machine learning.
- Abstract(参考訳): 機械学習モデルは、最近、サイズと人気が大幅に増加した。
しかし、この成長はデータセットのプライバシーに関する懸念を引き起こしている。
データ漏洩に対処するため、さまざまなプライバシーフレームワークは、機械学習モデルの出力がトレーニングデータを損なわないことを保証している。
しかし、この民営化はトレーニングプロセスにランダムノイズを加えることでコストがかかるため、モデルの性能が低下する。
入力の小さな変更に対してより耐性を持たせ、したがってより安定させることで、プライバシーを保護しながら必要なノイズ量を削減できる。
本稿では, 機械学習における民営化の悪影響を最小限に抑えるため, 安定性向上のための様々な手法について検討する。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Scalable Differential Privacy Mechanisms for Real-Time Machine Learning Applications [0.0]
大規模言語モデル(LLM)は、ユーザのプライバシ保護が最重要であるリアルタイム機械学習アプリケーションに、ますます統合されている。
従来の差分プライバシーメカニズムは、プライバシーと精度のバランスをとるのに苦労することが多い。
当社では,堅牢なプライバシ保証とモデルパフォーマンスの向上を重視した,リアルタイム機械学習に適したフレームワークであるScalable Differential Privacy(SDP)を紹介した。
論文 参考訳(メタデータ) (2024-09-16T20:52:04Z) - FRAMU: Attention-based Machine Unlearning using Federated Reinforcement
Learning [16.86560475992975]
FRAMU(Federated Reinforcement Learning)を用いた注意型機械学習について紹介する。
FRAMUには適応学習機構、プライバシー保護技術、最適化戦略が組み込まれている。
実験の結果,FRAMUはベースラインモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2023-09-19T03:13:17Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
差分プライバシーは、あらゆる攻撃や脆弱性から機械学習モデルを保護するために使用される。
本稿では,2つのカテゴリに分類される差分プライベート機械学習アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-11-19T14:20:53Z) - Statistical Privacy Guarantees of Machine Learning Preprocessing
Techniques [1.198727138090351]
機械学習パイプラインのプライバシレベルを測定するために,統計的手法に基づくプライバシ違反検出フレームワークを適用した。
新たに作成されたフレームワークを適用して、不均衡なデータセットを扱う際に使用される再サンプリング技術によって、結果のモデルがよりプライバシーを漏洩することを示す。
論文 参考訳(メタデータ) (2021-09-06T14:08:47Z) - Towards Quantifying the Carbon Emissions of Differentially Private
Machine Learning [0.0]
本稿では, 差分プライバシーが学習アルゴリズムに与える影響を, 炭素フットプリントの観点から検討する。
広範な実験を通じて、望ましいプライバシーレベルと二酸化炭素排出量の削減のバランスをとることのできるノイズレベルを選択するための更なるガイダンスが提供される。
論文 参考訳(メタデータ) (2021-07-14T19:25:25Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - Differentially Private Deep Learning with Smooth Sensitivity [144.31324628007403]
プライバシーに関する懸念を、差分プライバシーのレンズを通して研究する。
このフレームワークでは、モデルのトレーニングに使用されるデータの詳細が曖昧になるようにモデルを摂動することで、一般的にプライバシー保証が得られます。
過去の研究で使われた最も重要なテクニックの1つは、教師モデルのアンサンブルであり、ノイズの多い投票手順に基づいて生徒に情報を返す。
本研究では,イミュータブルノイズArgMaxと呼ばれるスムーズな感性を有する新しい投票機構を提案する。これは,ある条件下では,学生に伝達される有用な情報に影響を与えることなく,教師から非常に大きなランダムノイズを発生させることができる。
論文 参考訳(メタデータ) (2020-03-01T15:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。