論文の概要: Anomaly Detection in Dynamic Graphs: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2406.00134v1
- Date: Fri, 31 May 2024 18:54:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:33:32.389007
- Title: Anomaly Detection in Dynamic Graphs: A Comprehensive Survey
- Title(参考訳): 動的グラフにおける異常検出:包括的調査
- Authors: Ocheme Anthony Ekle, William Eberle,
- Abstract要約: 本稿では,動的グラフを用いた異常検出の包括的,概念的概要について述べる。
既存のグラフベースの異常検出(AD)技術とその動的ネットワークへの応用に焦点を当てる。
- 参考スコア(独自算出の注目度): 0.23020018305241333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey paper presents a comprehensive and conceptual overview of anomaly detection using dynamic graphs. We focus on existing graph-based anomaly detection (AD) techniques and their applications to dynamic networks. The contributions of this survey paper include the following: i) a comparative study of existing surveys on anomaly detection; ii) a Dynamic Graph-based Anomaly Detection (DGAD) review framework in which approaches for detecting anomalies in dynamic graphs are grouped based on traditional machine-learning models, matrix transformations, probabilistic approaches, and deep-learning approaches; iii) a discussion of graphically representing both discrete and dynamic networks; and iv) a discussion of the advantages of graph-based techniques for capturing the relational structure and complex interactions in dynamic graph data. Finally, this work identifies the potential challenges and future directions for detecting anomalies in dynamic networks. This DGAD survey approach aims to provide a valuable resource for researchers and practitioners by summarizing the strengths and limitations of each approach, highlighting current research trends, and identifying open challenges. In doing so, it can guide future research efforts and promote advancements in anomaly detection in dynamic graphs. Keywords: Graphs, Anomaly Detection, dynamic networks,Graph Neural Networks (GNN), Node anomaly, Graph mining.
- Abstract(参考訳): 本稿では,動的グラフを用いた異常検出の包括的,概念的概要について述べる。
既存のグラフベースの異常検出(AD)技術とその動的ネットワークへの応用に焦点を当てる。
本調査報告の貢献は以下のとおりである。
一 異常検出に関する既存調査の比較研究
二 動的グラフに基づく異常検出(DGAD)レビューフレームワークにおいて、従来の機械学習モデル、行列変換、確率論的アプローチ、ディープラーニングアプローチに基づいて、動的グラフの異常を検出するアプローチをグループ化する。
三 離散的及び動的ネットワークの両方を図式的に表現する議論及び
iv) 動的グラフデータにおける関係構造と複雑な相互作用を捉えるためのグラフベースの手法の利点に関する議論。
最後に,動的ネットワークにおける異常検出の潜在的な課題と今後の方向性を明らかにする。
このDGADサーベイアプローチは、それぞれのアプローチの強みと限界を要約し、現在の研究動向を強調し、オープンな課題を特定することで、研究者や実践者にとって貴重なリソースを提供することを目的としている。
これにより、将来の研究をガイドし、動的グラフにおける異常検出の進歩を促進することができる。
キーワード:グラフ、異常検出、動的ネットワーク、グラフニューラルネットワーク(GNN)、ノード異常、グラフマイニング。
関連論文リスト
- GADY: Unsupervised Anomaly Detection on Dynamic Graphs [18.1896489628884]
本稿では,従来の離散的手法の限界を突破する細粒度情報を取得するための連続的動的グラフモデルを提案する。
第2の課題として、負の相互作用を生成するためにジェネレーティブ・アドバイサル・ネットワーク(Generative Adversarial Networks)を開拓した。
提案したGADYは,3つの実世界のデータセットにおいて,従来の最先端手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-10-25T05:27:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning with Neural Networks: A Survey [0.0]
動的グラフ表現は新しい機械学習問題として現れた。
本稿では,動的グラフ学習に関連する問題とモデルをレビューすることを目的とする。
論文 参考訳(メタデータ) (2023-04-12T09:39:17Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
論文 参考訳(メタデータ) (2023-02-22T12:59:38Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
DYnamic graph(TADDY)のためのトランスフォーマーを用いた新しい異常検出フレームワークを提案する。
本フレームワークは,進化するグラフストリームにおいて,各ノードの構造的役割と時間的役割をよりよく表現するための包括的ノード符号化戦略を構築する。
提案するTADDYフレームワークは,4つの実世界のデータセットに対して,最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-18T02:27:19Z) - A Survey on Embedding Dynamic Graphs [0.0]
我々は動的グラフ埋め込みを概観し,その基礎と最近の進歩について論じる。
問題設定に焦点をあて,動的グラフ埋め込みの形式的定義を導入する。
我々は、埋め込み、トポロジ的進化による分類、特徴進化、ネットワーク上のプロセスによって包含される様々な動的挙動を探索する。
論文 参考訳(メタデータ) (2021-01-04T20:35:26Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。