論文の概要: Multi-Modal and Multi-Agent Systems Meet Rationality: A Survey
- arxiv url: http://arxiv.org/abs/2406.00252v1
- Date: Sat, 1 Jun 2024 01:17:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:04:10.306053
- Title: Multi-Modal and Multi-Agent Systems Meet Rationality: A Survey
- Title(参考訳): 合理性を考慮したマルチモーダル・マルチエージェントシステム:サーベイ
- Authors: Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Weijie J. Su, Camillo J. Taylor, Tanwi Mallick,
- Abstract要約: 合理性(Rationality)とは、論理的な思考と、証拠や論理的な規則に沿った決定によって特徴づけられる、理性によって導かれる性質である。
最近の研究は、一貫性と信頼性を高めるために、様々な種類のデータやツールと協調して働く複数のエージェントの強みを活用する試みである。
本稿では,マルチモーダルシステムとマルチエージェントシステムが,現状調査によって合理性に向かって進んでいるかを理解することを目的とする。
- 参考スコア(独自算出の注目度): 24.11852705458977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rationality is the quality of being guided by reason, characterized by logical thinking and decision-making that align with evidence and logical rules. This quality is essential for effective problem-solving, as it ensures that solutions are well-founded and systematically derived. Despite the advancements of large language models (LLMs) in generating human-like text with remarkable accuracy, they present biases inherited from the training data, inconsistency across different contexts, and difficulty understanding complex scenarios involving multiple layers of context. Therefore, recent research attempts to leverage the strength of multiple agents working collaboratively with various types of data and tools for enhanced consistency and reliability. To that end, this paper aims to understand whether multi-modal and multi-agent systems are advancing toward rationality by surveying the state-of-the-art works, identifying advancements over single-agent and single-modal systems in terms of rationality, and discussing open problems and future directions. We maintain an open repository at https://github.com/bowen-upenn/MMMA_Rationality.
- Abstract(参考訳): 合理性(Rationality)とは、論理的な思考と、証拠や論理的な規則に沿った決定によって特徴づけられる、理性によって導かれる性質である。
この品質は、ソリューションが十分に確立され、体系的に導出されることを保証するため、効果的な問題解決に不可欠である。
大きな言語モデル(LLM)が顕著な精度で人間に似たテキストを生成するのに進歩しているにもかかわらず、トレーニングデータから継承されたバイアス、異なるコンテキスト間での不整合、複数のコンテキスト層を含む複雑なシナリオを理解するのが困難である。
したがって、近年の研究は、一貫性と信頼性を高めるために、様々な種類のデータやツールと協調して働く複数のエージェントの強度を活用しようとしている。
そこで本稿は,マルチモーダルシステムとマルチエージェントシステムが合理性に向かって進んでいるかを理解することを目的として,現状を調査し,合理性の観点から単モーダルシステムと単モーダルシステムの進歩を特定し,オープンな問題と今後の方向性について議論する。
https://github.com/bowen-upenn/MMMA_Rationality.comでオープンリポジトリをメンテナンスしています。
関連論文リスト
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
論文 参考訳(メタデータ) (2024-07-20T16:37:21Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
医療、法律、金融などの分野における高い意思決定タスクは、精度、包括性、論理的一貫性のレベルを必要とする。
これらの問題に対処するための,ニューロシンボリックAIプラットフォームを開発した。
このプラットフォームは、知識抽出とアライメントのための微調整LDMと、堅牢なシンボリック推論エンジンを統合している。
論文 参考訳(メタデータ) (2024-06-26T00:00:45Z) - MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex Visual Reasoning [3.651416979200174]
MMCTAgentは、複雑な視覚的推論タスクにおける現在のMLLM固有の制限に対処するために設計された、新しい批判的思考エージェントフレームワークである。
人間の認知プロセスや批判的思考にインスパイアされたMCCTAgentは、複数のモーダル情報を反復的に分析し、クエリを分解し、戦略を計画し、その推論を動的に進化させる。
論文 参考訳(メタデータ) (2024-05-28T16:55:41Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - A Survey on Context-Aware Multi-Agent Systems: Techniques, Challenges
and Future Directions [1.1458366773578277]
自律型エージェントに対する研究の関心が高まっている。
課題は、これらのエージェントが動的環境における不確実性を学び、推論し、ナビゲートできるようにすることである。
コンテキスト認識は、マルチエージェントシステムの強化において重要な要素として現れる。
論文 参考訳(メタデータ) (2024-02-03T00:27:22Z) - Responsible Emergent Multi-Agent Behavior [2.9370710299422607]
Responsible AIの最先端技術は、人間の問題はマルチエージェントの問題である、という重要なポイントを無視した。
交通の運転から経済政策の交渉まで、人間の問題解決には複数の個人の行動と動機の相互作用と相互作用が伴う。
この論文は、責任ある創発的マルチエージェント行動の研究を発展させる。
論文 参考訳(メタデータ) (2023-11-02T21:37:32Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。