論文の概要: Contrastive Learning Via Equivariant Representation
- arxiv url: http://arxiv.org/abs/2406.00262v2
- Date: Thu, 10 Oct 2024 15:49:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:29:12.049714
- Title: Contrastive Learning Via Equivariant Representation
- Title(参考訳): 等変表現を用いたコントラスト学習
- Authors: Sifan Song, Jinfeng Wang, Qiaochu Zhao, Xiang Li, Dufan Wu, Angelos Stefanidis, Jionglong Su, S. Kevin Zhou, Quanzheng Li,
- Abstract要約: CLeVERは,任意の複雑性の増大戦略に適合する,新しい異種コントラスト学習フレームワークである。
実験結果から,CLeVERは実用自然画像から同変情報を効果的に抽出し,組み込んだ。
- 参考スコア(独自算出の注目度): 19.112460889771423
- License:
- Abstract: Invariant Contrastive Learning (ICL) methods have achieved impressive performance across various domains. However, the absence of latent space representation for distortion (augmentation)-related information in the latent space makes ICL sub-optimal regarding training efficiency and robustness in downstream tasks. Recent studies suggest that introducing equivariance into Contrastive Learning (CL) can improve overall performance. In this paper, we revisit the roles of augmentation strategies and equivariance in improving CL's efficacy. We propose CLeVER (Contrastive Learning Via Equivariant Representation), a novel equivariant contrastive learning framework compatible with augmentation strategies of arbitrary complexity for various mainstream CL backbone models. Experimental results demonstrate that CLeVER effectively extracts and incorporates equivariant information from practical natural images, thereby improving the training efficiency and robustness of baseline models in downstream tasks and achieving state-of-the-art (SOTA) performance. Moreover, we find that leveraging equivariant information extracted by CLeVER simultaneously enhances rotational invariance and sensitivity across experimental tasks, and helps stabilize the framework when handling complex augmentations, particularly for models with small-scale backbones.
- Abstract(参考訳): Invariant Contrastive Learning (ICL) 法は様々な領域で優れた性能を発揮している。
しかし、歪み(増大)に関連する情報に対する潜時空間表現が欠如しているため、下流タスクのトレーニング効率と堅牢性に関して、ICLは準最適である。
近年の研究では、コントラスト学習(CL)に同値を導入することにより、全体的な性能が向上することが示唆されている。
本稿では,CLの有効性向上における拡張戦略と等価性の役割を再考する。
本稿では,CLeVER(Contrastive Learning Via Equivariant Representation)を提案する。
実験結果から,CLeVERは,実際の自然画像から同変情報を効果的に抽出,組み込んで,下流タスクにおけるベースラインモデルのトレーニング効率とロバスト性を向上し,最先端(SOTA)性能を実現することが示唆された。
さらに、CLeVERによって抽出された同変情報を活用することにより、実験タスク間の回転不変性と感度が同時に向上し、特に小規模バックボーンを持つモデルにおいて、複雑な拡張処理を行う際のフレームワークの安定化に役立ちます。
関連論文リスト
- DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
Learning with Hill-Climbing [3.533544633664583]
EFCIL(Exemplar-free class-incremental Learning)は、主に破滅的な忘れが原因で大きな課題を提起する。
従来のEFCILのアプローチは、連続した微調整や安定性を通じて、プラスチックのモデルに傾くのが一般的である。
本稿では,様々なオーバーサンプリング手法と動的最適化手法の有効性を検討するための基礎的なFeTrILフレームワークを構築した。
論文 参考訳(メタデータ) (2024-03-12T08:34:05Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context Learning (ICL) は、近年の大規模言語モデル(LLM)の進歩により、効率的なアプローチとなっている。
しかし、両方のパラダイムは、過信の批判的な問題(すなわち、誤校正)に苦しむ傾向にある。
論文 参考訳(メタデータ) (2023-12-21T11:55:10Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
データ拡張(DA)は、ビジュアル強化学習(RL)アルゴリズムのサンプル効率を高める重要な手法である。
サンプル効率のよい視覚的RLを実現する上で, DAのどの属性が有効かは明らかになっていない。
本研究は,DAの属性が有効性に与える影響を評価するための総合的な実験を行う。
論文 参考訳(メタデータ) (2023-05-25T15:46:20Z) - Cross-Stream Contrastive Learning for Self-Supervised Skeleton-Based
Action Recognition [22.067143671631303]
自己教師型骨格に基づく行動認識は、対照的な学習の発展とともに急速に成長する。
骨格に基づく行動表現学習(CSCLR)のためのクロスストリームコントラスト学習フレームワークを提案する。
具体的には、CSCLRはストリーム内コントラストペアを利用するだけでなく、ストリーム間コントラストペアをハードサンプルとして導入し、より良い表現学習を定式化する。
論文 参考訳(メタデータ) (2023-05-03T10:31:35Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
我々は,自己教師付きコントラスト学習の伝達可能性を分析する理論的枠組みを開発する。
対照的な学習は、その伝達可能性を制限するような、ドメイン不変の機能を学ぶのに失敗することを示す。
これらの理論的知見に基づき、Augmentation-robust Contrastive Learning (ArCL) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T09:26:20Z) - Unbiased and Efficient Self-Supervised Incremental Contrastive Learning [31.763904668737304]
本稿では,新たなIncremental InfoNCE(NCE-II)損失関数からなる自己教師型Incremental Contrastive Learning(ICL)フレームワークを提案する。
ICLは最大16.7倍のトレーニングスピードアップと16.8倍の高速収束を実現している。
論文 参考訳(メタデータ) (2023-01-28T06:11:31Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
本稿では、異なるインスタンス間の関係をモデル化して表現を学習する新しいリレーショナル自己教師型学習(ReSSL)フレームワークを提案する。
提案手法では,異なるインスタンス間でのペアワイズ類似度の分布を,テクトitrelationmetricとして高めている。
実験の結果,提案したReSSLは,ネットワークアーキテクチャの異なる最先端手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-03-16T16:14:19Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Invariance-based Multi-Clustering of Latent Space Embeddings for
Equivariant Learning [12.770012299379099]
より深い群不変学習を強制することにより、リー群多様体における等角写像を非共役化する手法を提案する。
実験の結果,このモデルでは,不変表現と同変表現を効果的に切り離すことができ,学習速度が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-07-25T03:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。