論文の概要: BeFA: A General Behavior-driven Feature Adapter for Multimedia Recommendation
- arxiv url: http://arxiv.org/abs/2406.00323v1
- Date: Sat, 01 Jun 2024 06:53:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 23:05:28.365932
- Title: BeFA: A General Behavior-driven Feature Adapter for Multimedia Recommendation
- Title(参考訳): BeFA: マルチメディアレコメンデーションのための一般的な行動駆動型特徴適応
- Authors: Qile Fan, Penghang Yu, Zhiyi Tan, Bing-Kun Bao, Guanming Lu,
- Abstract要約: マルチメディアレコメンデータシステムは、ユーザの好みをモデル化するために行動情報とコンテンツ情報を活用することに重点を置いている。
事前訓練された機能エンコーダは、過剰な嗜好と関係のない詳細を含む、コンテンツ全体から機能を同時に抽出することが多い。
本稿では,これらの問題に対処するために,効果的で効率的な行動駆動型特徴適応器(BeFA)を提案する。
- 参考スコア(独自算出の注目度): 3.956286230894268
- License:
- Abstract: Multimedia recommender systems focus on utilizing behavioral information and content information to model user preferences. Typically, it employs pre-trained feature encoders to extract content features, then fuses them with behavioral features. However, pre-trained feature encoders often extract features from the entire content simultaneously, including excessive preference-irrelevant details. We speculate that it may result in the extracted features not containing sufficient features to accurately reflect user preferences. To verify our hypothesis, we introduce an attribution analysis method for visually and intuitively analyzing the content features. The results indicate that certain products' content features exhibit the issues of information drift}and information omission,reducing the expressive ability of features. Building upon this finding, we propose an effective and efficient general Behavior-driven Feature Adapter (BeFA) to tackle these issues. This adapter reconstructs the content feature with the guidance of behavioral information, enabling content features accurately reflecting user preferences. Extensive experiments demonstrate the effectiveness of the adapter across all multimedia recommendation methods. The code will be publicly available upon the paper's acceptance.
- Abstract(参考訳): マルチメディアレコメンデータシステムは、ユーザの好みをモデル化するために行動情報とコンテンツ情報を活用することに重点を置いている。
通常は、トレーニング済みの機能エンコーダを使用してコンテンツの特徴を抽出し、行動的特徴と融合する。
しかし、事前訓練された機能エンコーダは、過剰な嗜好と関係のない詳細を含む、コンテンツ全体から機能を同時に抽出することが多い。
ユーザの好みを正確に反映する十分な特徴を含まない特徴が抽出される可能性があると推測する。
本仮説を検証するために,コンテンツの特徴を視覚的かつ直感的に分析する属性解析手法を提案する。
その結果,特定の商品のコンテンツ特徴が情報ドリフトと情報の欠落の問題を呈し,特徴の表現能力が低下していることが示唆された。
この知見に基づいて,これらの問題に対処するための,効果的かつ効率的な行動駆動型特徴適応器(BeFA)を提案する。
コンテンツ特徴を行動情報のガイダンスで再構成し、ユーザの好みを正確に反映したコンテンツ特徴を実現する。
全マルチメディアレコメンデーション手法におけるアダプタの有効性を示す実験を行った。
コードは、論文の受理時に公開される。
関連論文リスト
- FineRec:Exploring Fine-grained Sequential Recommendation [28.27273649170967]
本稿では,属性-選択対のレビューを精査し,逐次レコメンデーションを微妙に処理する新しいフレームワークを提案する。
各属性に対して、ユニークな属性固有のユーザ-オピニオン-イットグラフが作成され、対応する意見が異質なユーザノードとアイテムノードをリンクするエッジとして機能する。
本稿では,属性固有のユーザ/イテム表現をすべての属性にわたって統合し,レコメンデーションを生成するためのインタラクション駆動型融合機構を提案する。
論文 参考訳(メタデータ) (2024-04-19T16:04:26Z) - Learning User Embeddings from Human Gaze for Personalised Saliency Prediction [12.361829928359136]
本稿では,自然画像のペアと対応する相性マップからユーザ埋め込みを抽出する新しい手法を提案する。
提案手法のコアとなるのは,異なるユーザのイメージと個人満足度マップのペアを対比することにより,ユーザの埋め込みを学習する,シームズ畳み込みニューラルエンコーダである。
論文 参考訳(メタデータ) (2024-03-20T14:58:40Z) - Tell Me What Is Good About This Property: Leveraging Reviews For
Segment-Personalized Image Collection Summarization [3.063926257586959]
プロパティ・レビューの分析により,プロパティ・ヴィジュアライゼーションの要約におけるユーザの意図を考察する。
視覚的な要約にレビューからの洞察を取り入れることで、ユーザに対して関連コンテンツを提示することで要約を強化する。
人間の知覚研究を含む我々の実験は、我々のクロスモーダルアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2023-10-30T17:06:49Z) - Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models [64.24227572048075]
本稿では,視覚言語モデルのためのKnowledge-Aware Prompt Tuning(KAPT)フレームワークを提案する。
我々のアプローチは、人間の知性からインスピレーションを得ており、外部知識は、通常、オブジェクトの新たなカテゴリを認識するために組み込まれています。
論文 参考訳(メタデータ) (2023-08-22T04:24:45Z) - Show Me What I Like: Detecting User-Specific Video Highlights Using
Content-Based Multi-Head Attention [58.44096082508686]
そこで本稿では,従来視聴したビデオに表示されていたハイライトクリップに基づいて,対象ビデオの個別化ハイライトを検出する手法を提案する。
本手法は,対象物と人的活動の事前学習機能を用いて,好むクリップの内容と対象ビデオの両方を明示的に活用する。
論文 参考訳(メタデータ) (2022-07-18T02:32:48Z) - Discovering Personalized Semantics for Soft Attributes in Recommender
Systems using Concept Activation Vectors [34.56323846959459]
インタラクティブなレコメンデータシステムは、ユーザがよりリッチな方法で意図、好み、制約、コンテキストを表現することを可能にする。
課題の1つは、ユーザのセマンティックな意図を、しばしば望ましい項目を記述するために使用されるオープンエンドの用語や属性から推測することである。
このような属性のセマンティクスを捉える表現を学習し、それをレコメンデーションシステムにおけるユーザの好みや行動に結びつけるためのフレームワークを開発する。
論文 参考訳(メタデータ) (2022-02-06T18:45:15Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
レコメンデーションシステムでは、ユーザとアイテムは属性に関連付けられ、ユーザはアイテムの好みを表示する。
ユーザ(item)属性をアノテートすることは労働集約的なタスクであるため、属性値が欠落している多くの属性値と不完全であることが多い。
本稿では,共同項目推薦と属性推論のための適応グラフ畳み込みネットワーク(AGCN)アプローチを提案する。
論文 参考訳(メタデータ) (2020-05-25T10:50:01Z) - Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton [108.01007935498104]
本稿では,高次物体分割,エッジ検出,スケルトン抽出など,低レベルの3つの視覚問題を解く。
まず、これらのタスクで共有される類似点を示し、統一されたフレームワークの開発にどのように活用できるかを示す。
論文 参考訳(メタデータ) (2020-04-18T11:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。