論文の概要: DeCoOp: Robust Prompt Tuning with Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2406.00345v1
- Date: Sat, 1 Jun 2024 07:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:34:33.649249
- Title: DeCoOp: Robust Prompt Tuning with Out-of-Distribution Detection
- Title(参考訳): DeCoOp: アウト・オブ・ディストリビューション検出によるロバストプロンプトチューニング
- Authors: Zhi Zhou, Ming Yang, Jiang-Xin Shi, Lan-Zhe Guo, Yu-Feng Li,
- Abstract要約: そこで我々は,新しいクラス検出器とサブクラス化器を導入し,基本クラスと新クラスの識別性をさらに向上させる,新しいプロンプトチューニング手法であるDecomposed Context Optimization(DeCoOp)を提案する。
11のベンチマークデータセットによる実験結果から、DePTの有効性が検証され、DeCoOpが現在の最先端手法よりも優れており、平均精度が2%向上していることが示された。
- 参考スコア(独自算出の注目度): 52.100335904875614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language models (VLMs), such as CLIP, have demonstrated impressive zero-shot capabilities for various downstream tasks. Their performance can be further enhanced through few-shot prompt tuning methods. However, current studies evaluate the performance of learned prompts separately on base and new classes. This evaluation lacks practicality for real-world applications since downstream tasks cannot determine whether the data belongs to base or new classes in advance. In this paper, we explore a problem setting called Open-world Prompt Tuning (OPT), which involves tuning prompts on base classes and evaluating on a combination of base and new classes. By introducing Decomposed Prompt Tuning framework (DePT), we theoretically demonstrate that OPT can be solved by incorporating out-of-distribution detection into prompt tuning, thereby enhancing the base-to-new discriminability. Based on DePT, we present a novel prompt tuning approach, namely, Decomposed Context Optimization (DeCoOp), which introduces new-class detectors and sub-classifiers to further enhance the base-class and new-class discriminability. Experimental results on 11 benchmark datasets validate the effectiveness of DePT and demonstrate that DeCoOp outperforms current state-of-the-art methods, providing a significant 2% average accuracy improvement.
- Abstract(参考訳): CLIPのようなヴィジュアル言語モデル(VLM)は、様々なダウンストリームタスクに対して印象的なゼロショット機能を示している。
これらの性能は、数発のプロンプトチューニング手法によってさらに向上することができる。
しかし,近年の研究では,初等・新等級の学習指導を個別に評価している。
この評価は、ダウンストリームタスクが前もってデータがベースまたは新しいクラスに属しているかどうかを判断できないため、現実世界のアプリケーションの実用性に欠ける。
本稿では,ベースクラスにおけるプロンプトのチューニングと,ベースクラスと新しいクラスの組み合わせによる評価を含む,Open-world Prompt Tuning (OPT)と呼ばれる問題設定について検討する。
DePT(Decomposed Prompt Tuning framework)を導入することにより,OPTが即時チューニングにアウト・オブ・ディストリビューション検出を組み込むことで解決できることが理論的に証明された。
DePTに基づく新しいプロンプトチューニング手法であるDecomposed Context Optimization (DeCoOp)を提案する。
11のベンチマークデータセットによる実験結果から、DePTの有効性が検証され、DeCoOpが現在の最先端手法よりも優れており、平均精度が2%向上していることが示された。
関連論文リスト
- Efficient Test-Time Prompt Tuning for Vision-Language Models [41.90997623029582]
Self-TPTは、効率的なテストタイムプロンプトチューニングにセルフ教師付き学習を活用するフレームワークである。
本稿では,Self-TPTが推論コストを大幅に削減するだけでなく,最先端の性能も向上することを示す。
論文 参考訳(メタデータ) (2024-08-11T13:55:58Z) - CLIPArTT: Light-weight Adaptation of CLIP to New Domains at Test Time [19.0284321951354]
CLIP Adaptation duRing Test-Time(CLIPArTT)を導入する。これは、事前学習された視覚言語モデル(VLM)に対する完全なテスト時間適応(TTA)アプローチである。
提案手法では,複数の予測クラスを1つの新しいテキストプロンプトに集約し,擬似ラベルとして入力を再分類する。
以上の結果から,新たなトランスフォーメーションやトレーニング可能なモジュールを必要とせずに,CLIPArTTは非破損データセット間で動的にパフォーマンスを向上することがわかった。
論文 参考訳(メタデータ) (2024-05-01T07:24:30Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Understanding and Mitigating Overfitting in Prompt Tuning for
Vision-Language Models [108.13378788663196]
本稿では, トレーニング過程全体において, 低ランク部分空間にバックプロパゲーションの勾配を投影するSubspace Prompt Tuning(SubPT)を提案する。
我々はCoOpにノベル・ラーナー・フィーチャー(NFL)を装備し、学習したプロンプトをトレーニングセット以外の新しいカテゴリに一般化する能力を高める。
論文 参考訳(メタデータ) (2022-11-04T02:06:22Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
分類器が「ゼロ・オブ・ア・ア・ア・ベ」決定を行う能力は、閉集合クラスにおける精度と高い相関関係があることが示される。
この相関を利用して、閉セット精度を向上させることにより、クロスエントロピーOSR'ベースライン'の性能を向上させる。
また、セマンティックノベルティを検出するタスクをより尊重する新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2021-10-12T17:58:59Z) - FLEX: Unifying Evaluation for Few-Shot NLP [17.425495611344786]
我々はデシデラタを理想的な数ショットのNLPベンチマークとして定式化する。
最初のベンチマーク、公開リーダボード、フレームワークであるFLEXを紹介します。
また、数ショット学習のためのシンプルだが強力なプロンプトベースモデルであるUniFewも紹介する。
論文 参考訳(メタデータ) (2021-07-15T07:37:06Z) - Revisiting Deep Local Descriptor for Improved Few-Shot Classification [56.74552164206737]
textbfDense textbfClassification と textbfAttentive textbfPooling を利用して埋め込みの質を向上させる方法を示す。
広範に使われているグローバル平均プール (GAP) の代わりに, 注意深いプールを施し, 特徴マップをプールすることを提案する。
論文 参考訳(メタデータ) (2021-03-30T00:48:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。