論文の概要: E$^3$-Net: Efficient E(3)-Equivariant Normal Estimation Network
- arxiv url: http://arxiv.org/abs/2406.00347v1
- Date: Sat, 1 Jun 2024 07:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:24:46.781698
- Title: E$^3$-Net: Efficient E(3)-Equivariant Normal Estimation Network
- Title(参考訳): E$^3$-Net: 効率的なE(3)-等変正規推定ネットワーク
- Authors: Hanxiao Wang, Mingyang Zhao, Weize Quan, Zhen Chen, Dong-ming Yan, Peter Wonka,
- Abstract要約: 正規推定のための等価性を実現するために,E3-Netを提案する。
本稿では,この作業に必要なトレーニングリソースを,従来の作業の1/8に大幅に削減する,効率的なランダムフレーム手法を提案する。
提案手法は, 合成と実世界の両方のデータセットにおいて優れた結果が得られ, 最先端技術よりもかなり優れている。
- 参考スコア(独自算出の注目度): 47.77270862087191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud normal estimation is a fundamental task in 3D geometry processing. While recent learning-based methods achieve notable advancements in normal prediction, they often overlook the critical aspect of equivariance. This results in inefficient learning of symmetric patterns. To address this issue, we propose E3-Net to achieve equivariance for normal estimation. We introduce an efficient random frame method, which significantly reduces the training resources required for this task to just 1/8 of previous work and improves the accuracy. Further, we design a Gaussian-weighted loss function and a receptive-aware inference strategy that effectively utilizes the local properties of point clouds. Our method achieves superior results on both synthetic and real-world datasets, and outperforms current state-of-the-art techniques by a substantial margin. We improve RMSE by 4% on the PCPNet dataset, 2.67% on the SceneNN dataset, and 2.44% on the FamousShape dataset.
- Abstract(参考訳): 点雲正規推定は3次元幾何処理の基本的な課題である。
最近の学習に基づく手法は、通常の予測において顕著な進歩を遂げる一方で、しばしば同値の重要な側面を見落としている。
これにより、対称パターンの非効率な学習が可能となる。
この問題に対処するため,正規推定のための等価性を実現するためにE3-Netを提案する。
本稿では,このタスクに必要なトレーニングリソースを,従来の作業の1/8に大幅に削減し,精度を向上する,効率的なランダムフレーム手法を提案する。
さらに、ガウス重み付き損失関数と、点雲の局所特性を効果的に活用する受容認識推論戦略を設計する。
提案手法は, 合成と実世界の両方のデータセットにおいて優れた結果が得られ, 最先端技術よりもかなり優れている。
RMSEをPCPNetデータセットで4%改善し、SceneNNデータセットで2.67%、FamousShapeデータセットで2.44%改善しました。
関連論文リスト
- ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - SD-Net: Symmetric-Aware Keypoint Prediction and Domain Adaptation for 6D Pose Estimation In Bin-picking Scenarios [2.786599193929693]
対称認識型キーポイント予測と自己学習領域適応(SD-Net)を備えた新しい6次元ポーズ推定ネットワークを提案する。
キーポイント予測段階では,高度に隠蔽されたシーンにおいても,ロバストな3Dキーポイント選択戦略を設計し,3Dキーポイントを特定する。
ドメイン適応段階において,学生-教員養成方式を用いた自己学習フレームワークを提案する。
パブリックなSil'eaneデータセットでは、SD-Netは最先端の結果を達成し、平均精度は96%である。
論文 参考訳(メタデータ) (2024-03-14T12:08:44Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics [6.516912796655748]
本稿では,3次元点雲と2次元カラー画像から正規分布を推定する手法を提案する。
我々は,視覚的セマンティクスと3次元幾何データのハイブリッド情報を活用することを学ぶトランスフォーマーニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2022-11-19T03:55:09Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - Deep Point Cloud Normal Estimation via Triplet Learning [12.271669779096076]
点雲の新しい正規推定法を提案する。
a) 局所パッチの表現を学習する特徴符号化と(b) 学習した表現を入力として取り、通常のベクトルを回帰する正規推定である。
本手法は,シャープな特徴を保存し,CAD形状の正常な推定結果を改善する。
論文 参考訳(メタデータ) (2021-10-20T11:16:00Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - StickyPillars: Robust and Efficient Feature Matching on Point Clouds
using Graph Neural Networks [16.940377259203284]
StickyPillarsは、ポイントクラウド上の高速で正確で、非常に堅牢な3D機能マッチング方法である。
KITTIデータセット上で実証された登録問題に対して,最先端技術による精度評価結果を示す。
我々はマッチングシステムをLiDARオドメトリーパイプラインに統合し、KITTIデータセット上で最も正確な結果を得る。
論文 参考訳(メタデータ) (2020-02-10T17:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。