Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks
- URL: http://arxiv.org/abs/2406.00405v2
- Date: Wed, 5 Jun 2024 03:45:18 GMT
- Title: Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks
- Authors: Lihao Wang, Zhaofei Yu,
- Abstract summary: Spiking Neural Networks (SNNs) emulate the integrated-fire-leak mechanism found in biological neurons.
Existing SNNs predominantly rely on the Integrate-and-Fire Leaky (LIF) model.
This paper proposes a novel S-patioTemporal Circuit (STC) model.
- Score: 23.613277062707844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) emulate the integrated-fire-leak mechanism found in biological neurons, offering a compelling combination of biological realism and energy efficiency. In recent years, they have gained considerable research interest. However, existing SNNs predominantly rely on the Leaky Integrate-and-Fire (LIF) model and are primarily suited for simple, static tasks. They lack the ability to effectively model long-term temporal dependencies and facilitate spatial information interaction, which is crucial for tackling complex, dynamic spatio-temporal prediction tasks. To tackle these challenges, this paper draws inspiration from the concept of autaptic synapses in biology and proposes a novel Spatio-Temporal Circuit (STC) model. The STC model integrates two learnable adaptive pathways, enhancing the spiking neurons' temporal memory and spatial coordination. We conduct a theoretical analysis of the dynamic parameters in the STC model, highlighting their contribution in establishing long-term memory and mitigating the issue of gradient vanishing. Through extensive experiments on multiple spatio-temporal prediction datasets, we demonstrate that our model outperforms other adaptive models. Furthermore, our model is compatible with existing spiking neuron models, thereby augmenting their dynamic representations. In essence, our work enriches the specificity and topological complexity of SNNs.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Spatio-temporal Structure of Excitation and Inhibition Emerges in Spiking Neural Networks with and without Biologically Plausible Constraints [0.06752396542927405]
We present a Spiking Neural Network (SNN) model that incorporates learnable synaptic delays.
We implement a dynamic pruning strategy that combines DEEP R for connection removal and RigL for connection.
We observed that the reintroduction-temporal patterns of excitation and inhibition appeared in the more biologically plausible model as well.
arXiv Detail & Related papers (2024-07-07T11:55:48Z) - Unleashing the Potential of Spiking Neural Networks for Sequential
Modeling with Contextual Embedding [32.25788551849627]
Brain-inspired spiking neural networks (SNNs) have struggled to match their biological counterpart in modeling long-term temporal relationships.
This paper presents a novel Contextual Embedding Leaky Integrate-and-Fire (CE-LIF) spiking neuron model.
arXiv Detail & Related papers (2023-08-29T09:33:10Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
We propose a novel biologically inspired Long Short-Term Memory Leaky Integrate-and-Fire spiking neuron model, dubbed LSTM-LIF.
Our experimental results, on a diverse range of temporal classification tasks, demonstrate superior temporal classification capability, rapid training convergence, strong network generalizability, and high energy efficiency of the proposed LSTM-LIF model.
This work, therefore, opens up a myriad of opportunities for resolving challenging temporal processing tasks on emerging neuromorphic computing machines.
arXiv Detail & Related papers (2023-07-14T08:51:03Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Unsupervised Spiking Neural Network Model of Prefrontal Cortex to study
Task Switching with Synaptic deficiency [0.0]
We build a computational model of Prefrontal Cortex (PFC) using Spiking Neural Networks (SNN)
In this study, we use SNN's having parameters close to biologically plausible values and train the model using unsupervised Spike Timing Dependent Plasticity (STDP) learning rule.
arXiv Detail & Related papers (2023-05-23T05:59:54Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - SPATE-GAN: Improved Generative Modeling of Dynamic Spatio-Temporal
Patterns with an Autoregressive Embedding Loss [4.504870356809408]
We propose a novel loss objective combined with -GAN based on an autogressive embedding to reinforce the learning oftemporal dynamics.
We show that our embedding loss improves performance without any changes to the architecture of -GAN, highlighting our model's increased capacity for autocorrelationre structures.
arXiv Detail & Related papers (2021-09-30T12:10:05Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.