Stein Random Feature Regression
- URL: http://arxiv.org/abs/2406.00438v2
- Date: Tue, 4 Jun 2024 09:57:19 GMT
- Title: Stein Random Feature Regression
- Authors: Houston Warren, Rafael Oliveira, Fabio Ramos,
- Abstract summary: Stein random features (SRF) can be used to generate high-quality RFF samples and flexibly approximate non-analytical spectral measure posteriors.
SRFs require only the evaluation of log-probability gradients to perform both kernel approximation and Bayesian kernel learning.
We empirically validate the effectiveness of SRFs by comparing them to baselines on kernel approximation and well-known GP regression problems.
- Score: 18.477250397403722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In large-scale regression problems, random Fourier features (RFFs) have significantly enhanced the computational scalability and flexibility of Gaussian processes (GPs) by defining kernels through their spectral density, from which a finite set of Monte Carlo samples can be used to form an approximate low-rank GP. However, the efficacy of RFFs in kernel approximation and Bayesian kernel learning depends on the ability to tractably sample the kernel spectral measure and the quality of the generated samples. We introduce Stein random features (SRF), leveraging Stein variational gradient descent, which can be used to both generate high-quality RFF samples of known spectral densities as well as flexibly and efficiently approximate traditionally non-analytical spectral measure posteriors. SRFs require only the evaluation of log-probability gradients to perform both kernel approximation and Bayesian kernel learning that results in superior performance over traditional approaches. We empirically validate the effectiveness of SRFs by comparing them to baselines on kernel approximation and well-known GP regression problems.
Related papers
- Optimal Kernel Quantile Learning with Random Features [0.9208007322096533]
This paper presents a generalization study of kernel quantile regression with random features (KQR-RF)
Our study establishes the capacity-dependent learning rates for KQR-RF under mild conditions on the number of RFs.
By slightly modifying our assumptions, the capacity-dependent error analysis can also be applied to cases with Lipschitz continuous losses.
arXiv Detail & Related papers (2024-08-24T14:26:09Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features [3.0079490585515347]
We introduce RFFNet, a scalable method that learns the kernel relevances' on the fly via first-order optimization.
We show that our approach has a small memory footprint and run-time, low prediction error, and effectively identifies relevant features.
We supply users with an efficient, PyTorch-based library, that adheres to the scikit-learn standard API and code for fully reproducing our results.
arXiv Detail & Related papers (2022-11-11T18:50:34Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Hybrid Random Features [60.116392415715275]
We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs)
HRFs automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest.
arXiv Detail & Related papers (2021-10-08T20:22:59Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
We prove that our quantized RFFs allow a high accuracy approximation of the underlying kernels.
We show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy.
We empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
arXiv Detail & Related papers (2021-06-04T17:24:47Z) - Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels [26.57122949130266]
Our algorithm achieves lower variance and approximation error compared with the existing kernel approximation methods.
With better approximation to the originally selected kernels, improved classification accuracy and regression ability is obtained.
arXiv Detail & Related papers (2021-04-13T13:56:50Z) - Marginalised Gaussian Processes with Nested Sampling [10.495114898741203]
Gaussian Process (GPs) models are a rich distribution over functions with inductive biases controlled by a kernel function.
This work presents an alternative learning procedure where the hyperparameters of the kernel function are marginalised using Nested Sampling (NS)
arXiv Detail & Related papers (2020-10-30T16:04:35Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.