Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels
- URL: http://arxiv.org/abs/2104.06204v2
- Date: Wed, 14 Apr 2021 00:54:53 GMT
- Title: Towards Unbiased Random Features with Lower Variance For Stationary
Indefinite Kernels
- Authors: Qin Luo, Kun Fang, Jie Yang, Xiaolin Huang
- Abstract summary: Our algorithm achieves lower variance and approximation error compared with the existing kernel approximation methods.
With better approximation to the originally selected kernels, improved classification accuracy and regression ability is obtained.
- Score: 26.57122949130266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random Fourier Features (RFF) demonstrate wellappreciated performance in
kernel approximation for largescale situations but restrict kernels to be
stationary and positive definite. And for non-stationary kernels, the
corresponding RFF could be converted to that for stationary indefinite kernels
when the inputs are restricted to the unit sphere. Numerous methods provide
accessible ways to approximate stationary but indefinite kernels. However, they
are either biased or possess large variance. In this article, we propose the
generalized orthogonal random features, an unbiased estimation with lower
variance.Experimental results on various datasets and kernels verify that our
algorithm achieves lower variance and approximation error compared with the
existing kernel approximation methods. With better approximation to the
originally selected kernels, improved classification accuracy and regression
ability is obtained with our approximation algorithm in the framework of
support vector machine and regression.
Related papers
- Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - On the Approximation of Kernel functions [0.0]
The paper addresses approximations of the kernel itself.
For the Hilbert Gauss kernel on the unit cube, the paper establishes an upper bound of the associated eigenfunctions.
This improvement confirms low rank approximation methods such as the Nystr"om method.
arXiv Detail & Related papers (2024-03-11T13:50:07Z) - FAVOR#: Sharp Attention Kernel Approximations via New Classes of
Positive Random Features [39.282051468586666]
We propose parameterized, positive, non-trigonometric RFs which approximate Gaussian and softmax- Kernels.
We show that our methods lead to variance reduction in practice and outperform previous methods in a kernel regression task.
We also present FAVOR#, a method for self-attention approximation in Transformers.
arXiv Detail & Related papers (2023-02-01T22:43:29Z) - Variational Autoencoder Kernel Interpretation and Selection for
Classification [59.30734371401315]
This work proposed kernel selection approaches for probabilistic classifiers based on features produced by the convolutional encoder of a variational autoencoder.
In the proposed implementation, each latent variable was sampled from the distribution associated with a single kernel of the last encoder's convolution layer, as an individual distribution was created for each kernel.
choosing relevant features on the sampled latent variables makes it possible to perform kernel selection, filtering the uninformative features and kernels.
arXiv Detail & Related papers (2022-09-10T17:22:53Z) - On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions [16.704246627541103]
We show that an important class of predictors, kernel machines with translation-invariant kernels, does not exhibit benign overfitting in fixed dimensions.
Our results apply to commonly used translation-invariant kernels such as Gaussian, Laplace, and Cauchy.
arXiv Detail & Related papers (2022-05-26T17:43:20Z) - Hybrid Random Features [60.116392415715275]
We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs)
HRFs automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest.
arXiv Detail & Related papers (2021-10-08T20:22:59Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Optimal Rates of Distributed Regression with Imperfect Kernels [0.0]
We study the distributed kernel regression via the divide conquer and conquer approach.
We show that the kernel ridge regression can achieve rates faster than $N-1$ in the noise free setting.
arXiv Detail & Related papers (2020-06-30T13:00:16Z) - Scaling up Kernel Ridge Regression via Locality Sensitive Hashing [6.704115928005158]
We introduce a weighted version of random binning features and show that the corresponding kernel function generates smooth Gaussian processes.
We show that our weighted random binning features provide a spectral approximation to the corresponding kernel matrix, leading to efficient algorithms for kernel ridge regression.
arXiv Detail & Related papers (2020-03-21T21:41:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.