Effectiveness of Vision Language Models for Open-world Single Image Test Time Adaptation
- URL: http://arxiv.org/abs/2406.00481v1
- Date: Sat, 1 Jun 2024 16:21:42 GMT
- Title: Effectiveness of Vision Language Models for Open-world Single Image Test Time Adaptation
- Authors: Manogna Sreenivas, Soma Biswas,
- Abstract summary: We propose a novel framework to address the real-world challenging task of Single Image Test Time Adaptation.
We leverage large scale Vision Language Models like CLIP to enable real time adaptation on a per-image basis.
The proposed framework ROSITA combines these components, enabling continuous online adaptation of Vision Language Models.
- Score: 15.621092104244003
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a novel framework to address the real-world challenging task of Single Image Test Time Adaptation in an open and dynamic environment. We leverage large scale Vision Language Models like CLIP to enable real time adaptation on a per-image basis without access to source data or ground truth labels. Since the deployed model can also encounter unseen classes in an open world, we first employ a simple and effective Out of Distribution (OOD) detection module to distinguish between weak and strong OOD samples. We propose a novel contrastive learning based objective to enhance the discriminability between weak and strong OOD samples by utilizing small, dynamically updated feature banks. Finally, we also employ a classification objective for adapting the model using the reliable weak OOD samples. The proposed framework ROSITA combines these components, enabling continuous online adaptation of Vision Language Models on a single image basis. Extensive experimentation on diverse domain adaptation benchmarks validates the effectiveness of the proposed framework. Our code can be found at the project site https://manogna-s.github.io/rosita/
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - SOOD-ImageNet: a Large-Scale Dataset for Semantic Out-Of-Distribution Image Classification and Semantic Segmentation [6.21476985578569]
Out-of-Distribution (OOD) detection in computer vision is a crucial research area.
SOOD-ImageNet is a novel dataset comprising around 1.6M images across 56 classes.
It is designed for common computer vision tasks such as image classification and semantic segmentation under OOD conditions.
arXiv Detail & Related papers (2024-09-02T09:37:39Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
Out-of-distribution (OOD) samples are crucial when deploying machine learning models in open-world scenarios.
We propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to potential Outlier Exposure, termed EOE.
EOE can be generalized to different tasks, including far, near, and fine-language OOD detection.
EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-06-02T17:09:48Z) - A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models [3.0495235326282186]
In deep learning, maintaining robustness against distribution shifts is critical.
This work explores a broad range of possibilities to adapt vision-language foundation models at test-time.
arXiv Detail & Related papers (2024-05-23T18:27:07Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
We establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the foundation model paradigm for speech.
We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads.
arXiv Detail & Related papers (2024-04-15T00:03:16Z) - Anomaly Detection by Adapting a pre-trained Vision Language Model [48.225404732089515]
We present a unified framework named CLIP-ADA for Anomaly Detection by Adapting a pre-trained CLIP model.
We introduce the learnable prompt and propose to associate it with abnormal patterns through self-supervised learning.
We achieve the state-of-the-art 97.5/55.6 and 89.3/33.1 on MVTec-AD and VisA for anomaly detection and localization.
arXiv Detail & Related papers (2024-03-14T15:35:07Z) - In-context Prompt Learning for Test-time Vision Recognition with Frozen Vision-language Model [13.983810804606264]
We propose In-Context Prompt Learning (InCPL) for test-time visual recognition tasks.
InCPL associates a new test sample with very few labeled examples as context information.
We introduce a context-aware unsupervised loss to optimize visual prompts tailored to test samples.
arXiv Detail & Related papers (2024-03-10T08:15:51Z) - Revisiting Active Learning in the Era of Vision Foundation Models [0.0]
Foundation vision or vision-language models are trained on large unlabeled or noisy data.
They are a natural fit for active learning (AL), which aims to maximize labeling efficiency.
We evaluate how foundation models influence three critical components of effective AL.
arXiv Detail & Related papers (2024-01-25T22:50:39Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Building One-class Detector for Anything: Open-vocabulary Zero-shot OOD
Detection Using Text-image Models [23.302018871162186]
We propose a novel one-class open-set OOD detector that leverages text-image pre-trained models in a zero-shot fashion.
Our approach is designed to detect anything not in-domain and offers the flexibility to detect a wide variety of OOD.
Our method shows superior performance over previous methods on all benchmarks.
arXiv Detail & Related papers (2023-05-26T18:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.