Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
- URL: http://arxiv.org/abs/2406.00489v2
- Date: Wed, 23 Oct 2024 14:42:35 GMT
- Title: Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
- Authors: Wei Jiang, Sifan Yang, Wenhao Yang, Lijun Zhang,
- Abstract summary: We introduce two novel algorithms that attain improved convergence rates of $mathcalO(d1/2T-1/2 + dn-1/2)$ and $mathcalO(d1/4T-1/4)$ respectively.
Numerical experiments across different tasks validate the effectiveness of our proposed methods.
- Score: 16.82220229840038
- License:
- Abstract: Sign stochastic gradient descent (signSGD) is a communication-efficient method that transmits only the sign of stochastic gradients for parameter updating. Existing literature has demonstrated that signSGD can achieve a convergence rate of $\mathcal{O}(d^{1/2}T^{-1/4})$, where $d$ represents the dimension and $T$ is the iteration number. In this paper, we improve this convergence rate to $\mathcal{O}(d^{1/2}T^{-1/3})$ by introducing the Sign-based Stochastic Variance Reduction (SSVR) method, which employs variance reduction estimators to track gradients and leverages their signs to update. For finite-sum problems, our method can be further enhanced to achieve a convergence rate of $\mathcal{O}(m^{1/4}d^{1/2}T^{-1/2})$, where $m$ denotes the number of component functions. Furthermore, we investigate the heterogeneous majority vote in distributed settings and introduce two novel algorithms that attain improved convergence rates of $\mathcal{O}(d^{1/2}T^{-1/2} + dn^{-1/2})$ and $\mathcal{O}(d^{1/4}T^{-1/4})$ respectively, outperforming the previous results of $\mathcal{O}(dT^{-1/4} + dn^{-1/2})$ and $\mathcal{O}(d^{3/8}T^{-1/8})$, where $n$ represents the number of nodes. Numerical experiments across different tasks validate the effectiveness of our proposed methods.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Accelerated Variance-Reduced Forward-Reflected Methods for Root-Finding Problems [8.0153031008486]
We propose a novel class of Nesterov's accelerated forward-reflected-based methods with variance reduction to solve root-finding problems.
Our algorithm is single-loop and leverages a new family of unbiased variance-reduced estimators specifically designed for root-finding problems.
arXiv Detail & Related papers (2024-06-04T15:23:29Z) - On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.
Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.
Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
arXiv Detail & Related papers (2024-02-01T07:21:32Z) - Convergence of a Normal Map-based Prox-SGD Method under the KL
Inequality [0.0]
We present a novel map-based algorithm ($mathsfnorMtext-mathsfSGD$) for $symbol$k$ convergence problems.
arXiv Detail & Related papers (2023-05-10T01:12:11Z) - High Probability Convergence of Stochastic Gradient Methods [15.829413808059124]
We show convergence with bounds depending on the initial distance to the optimal solution.
We demonstrate that our techniques can be used to obtain high bound for AdaGrad-Norm.
arXiv Detail & Related papers (2023-02-28T18:42:11Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - A New Framework for Variance-Reduced Hamiltonian Monte Carlo [88.84622104944503]
We propose a new framework of variance-reduced Hamiltonian Monte Carlo (HMC) methods for sampling from an $L$-smooth and $m$-strongly log-concave distribution.
We show that the unbiased gradient estimators, including SAGA and SVRG, based HMC methods achieve highest gradient efficiency with small batch size.
Experimental results on both synthetic and real-world benchmark data show that our new framework significantly outperforms the full gradient and gradient HMC approaches.
arXiv Detail & Related papers (2021-02-09T02:44:24Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - On the Minimax Optimality of the EM Algorithm for Learning Two-Component
Mixed Linear Regression [30.09238179576628]
We study the convergence rates of the EM algorithm for learning two-component mixed linear regression under all regimes of signal-to-noise ratio (SNR)
We show that the EM algorithm achieves minimax optimal sample complexity under all SNR regimes.
arXiv Detail & Related papers (2020-06-04T00:56:07Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.