論文の概要: FlowIE: Efficient Image Enhancement via Rectified Flow
- arxiv url: http://arxiv.org/abs/2406.00508v1
- Date: Sat, 1 Jun 2024 17:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:35:32.676620
- Title: FlowIE: Efficient Image Enhancement via Rectified Flow
- Title(参考訳): FlowIE: 整流流による効率的な画像強調
- Authors: Yixuan Zhu, Wenliang Zhao, Ao Li, Yansong Tang, Jie Zhou, Jiwen Lu,
- Abstract要約: FlowIEはフローベースのフレームワークであり、基本的な分布から高品質な画像への直線パスを推定する。
私たちのコントリビューションは、合成および実世界のデータセットに関する包括的な実験を通じて、厳密に検証されています。
- 参考スコア(独自算出の注目度): 71.6345505427213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image enhancement holds extensive applications in real-world scenarios due to complex environments and limitations of imaging devices. Conventional methods are often constrained by their tailored models, resulting in diminished robustness when confronted with challenging degradation conditions. In response, we propose FlowIE, a simple yet highly effective flow-based image enhancement framework that estimates straight-line paths from an elementary distribution to high-quality images. Unlike previous diffusion-based methods that suffer from long-time inference, FlowIE constructs a linear many-to-one transport mapping via conditioned rectified flow. The rectification straightens the trajectories of probability transfer, accelerating inference by an order of magnitude. This design enables our FlowIE to fully exploit rich knowledge in the pre-trained diffusion model, rendering it well-suited for various real-world applications. Moreover, we devise a faster inference algorithm, inspired by Lagrange's Mean Value Theorem, harnessing midpoint tangent direction to optimize path estimation, ultimately yielding visually superior results. Thanks to these designs, our FlowIE adeptly manages a diverse range of enhancement tasks within a concise sequence of fewer than 5 steps. Our contributions are rigorously validated through comprehensive experiments on synthetic and real-world datasets, unveiling the compelling efficacy and efficiency of our proposed FlowIE. Code is available at https://github.com/EternalEvan/FlowIE.
- Abstract(参考訳): イメージエンハンスメントは、複雑な環境と撮像デバイスの制限により、現実世界のシナリオで広範囲に応用される。
従来の手法は、しばしば調整されたモデルによって制約されるため、困難な劣化条件に直面すると頑丈性が低下する。
そこで本研究では,フローベース画像拡張フレームワークであるFlowIEを提案する。
長期の推論に苦しむ従来の拡散に基づく手法とは異なり、FlowIEは条件付き整流による線形多対一輸送マッピングを構築している。
この補正は確率伝達の軌跡を直線化し、推測を桁違いに加速させる。
この設計により、FlowIEはトレーニング済みの拡散モデルにおける豊富な知識を十分に活用することができ、様々な現実世界のアプリケーションに適しています。
さらに,Lagrange の Mean Value Theorem にインスパイアされた高速な推論アルゴリズムを考案し,経路推定を最適化するために中点接点方向を利用することにより,最終的に視覚的に優れた結果が得られることを示した。
これらの設計のおかげで、FlowIEは5ステップ未満の簡潔なシーケンス内で様々な拡張タスクを順応的に管理します。
私たちのコントリビューションは、合成および実世界のデータセットに関する包括的な実験を通じて厳格に検証され、提案したFlowIEの有効性と効率を明らかにする。
コードはhttps://github.com/EternalEvan/FlowIE.comで入手できる。
関連論文リスト
- Efficient Diffusion as Low Light Enhancer [63.789138528062225]
RATR(Reflectance-Aware Trajectory Refinement)は、イメージの反射成分を用いて教師の軌跡を洗練するための、シンプルで効果的なモジュールである。
textbfReDDiT (textbfDistilled textbfTrajectory) は低照度画像強調(LLIE)に適した効率的で柔軟な蒸留フレームワークである。
論文 参考訳(メタデータ) (2024-10-16T08:07:18Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
コントラスト最大化フレームワークと非直線運動を組み合わせた新たな自己監督的損失を画素レベルの軌跡の形で導入する。
連続時間運動の高密度推定では, 合成学習モデルのゼロショット性能を29%向上する。
論文 参考訳(メタデータ) (2024-07-15T15:18:28Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - Flow Matching in Latent Space [2.9330609943398525]
フローマッチングは、印象的な経験的パフォーマンスを示す生成モデルをトレーニングするフレームワークである。
本稿では,事前学習されたオートエンコーダの潜時空間にフローマッチングを適用し,計算効率を向上させることを提案する。
我々の研究は、条件生成タスクのフローマッチングへの様々な条件の統合における先駆的な貢献である。
論文 参考訳(メタデータ) (2023-07-17T17:57:56Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
連続するフレーム間の動きの表現は、ビデオの理解を大いに促進することが証明されている。
効果的な光フロー解決器であるTV-L1法は、抽出した光フローをキャッシュするために時間と費用がかかる。
UF-TSN(UF-TSN)は、軽量な非監視光フロー推定器を組み込んだ、エンドツーエンドのアクション認識手法です。
論文 参考訳(メタデータ) (2021-03-05T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。