論文の概要: The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems
- arxiv url: http://arxiv.org/abs/2406.00528v1
- Date: Sat, 1 Jun 2024 18:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 06:35:32.647525
- Title: The Firefighter Algorithm: A Hybrid Metaheuristic for Optimization Problems
- Title(参考訳): ファイアファイターアルゴリズム:最適化問題に対するハイブリッドメタヒューリスティック
- Authors: M. Z. Naser, A. Z. Naser,
- Abstract要約: The Firefighter Optimization (FFO) algorithm is a new hybrid metaheuristic for optimization problem。
FFOの性能を評価するため、FFOは13の最適化アルゴリズムに対して広範な実験を行った。
その結果、FFOは比較性能を達成し、いくつかのシナリオでは、得られた適合性、正確性に要する時間、時間単位でカバーされる研究空間の点で、一般的に採用されている最適化アルゴリズムよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 3.2432648012273346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Firefighter Optimization (FFO) algorithm as a new hybrid metaheuristic for optimization problems. This algorithm stems inspiration from the collaborative strategies often deployed by firefighters in firefighting activities. To evaluate the performance of FFO, extensive experiments were conducted, wherein the FFO was examined against 13 commonly used optimization algorithms, namely, the Ant Colony Optimization (ACO), Bat Algorithm (BA), Biogeography-Based Optimization (BBO), Flower Pollination Algorithm (FPA), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization Algorithm (WOA), and across 24 benchmark functions of various dimensions and complexities. The results demonstrate that FFO achieves comparative performance and, in some scenarios, outperforms commonly adopted optimization algorithms in terms of the obtained fitness, time taken for exaction, and research space covered per unit of time.
- Abstract(参考訳): 本稿では,最適化問題に対する新しいハイブリッドメタヒューリスティックとしてファイアファイアファイアウォール最適化(FFO)アルゴリズムを提案する。
このアルゴリズムは、消防士が消防活動にしばしば配置する協力戦略から着想を得ている。
FFOの性能を評価するために、FFOは、ACO(Ant Colony Optimization)、BA(Bat Algorithm)、BBO(Biogeography-Based Optimization)、FPA(Flower Pollination Algorithm)、GA(Genematic Algorithm)、Grey Wolf Optimizer(GWO)、Harmony Search(HS)、PSO(Particle Swarm Optimization)、Simulated Annealing(SA)、Tabu Search(TS)、Whale Optimization Algorithm(WOA)の13種類の一般的な最適化アルゴリズムと、様々な次元と複雑度のベンチマーク関数を比較検討した。
その結果、FFOは比較性能を達成し、いくつかのシナリオでは、得られた適合性、正確性に要する時間、時間単位でカバーされる研究空間の点で、一般的に採用されている最適化アルゴリズムよりも優れていることが示された。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - What is Metaheuristics? A Primer for the Epidemiologists [1.2783241540121182]
本稿では,様々な分野の応用を含む基本的BATアルゴリズムとその変種について概説する。
特定の応用として、BATアルゴリズムを生体統計学的推定問題に適用し、既存のアルゴリズムに対して明らかな優位性を示す。
論文 参考訳(メタデータ) (2024-10-26T02:13:00Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond [4.939986309170004]
GOOSEアルゴリズムは19のよく知られたテスト関数でベンチマークされる。
提案アルゴリズムは, 最新のベンチマーク関数10を用いて検証する。
得られた結果は,提案アルゴリズムの優れた性能を示すものである。
論文 参考訳(メタデータ) (2023-07-19T19:14:25Z) - Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study [0.0]
機械学習における最も重要な問題のひとつは、トレーニングモデルに適切なハイパーパラメータの選択である。
ハイパーパラメータ最適化(HPO)は、人工知能研究が最近注目している話題である。
本研究では,グリッドやランダム探索,ベイズ最適化などの古典的手法,遺伝的アルゴリズムや粒子群最適化といった人口ベースアルゴリズムについて論じる。
論文 参考訳(メタデータ) (2023-02-14T10:12:10Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Duck swarm algorithm: theory, numerical optimization, and applications [6.244015536594532]
本研究では,Duck Swarm Algorithm (DSA) という,群知能に基づく最適化アルゴリズムを提案する。
2つのルールは、提案されたDSAの探索と利用段階に対応するアヒルの餌の発見と採餌からモデル化される。
その結果, DSAは収束速度と探索・探索のバランスの観点から, 高性能な最適化手法であることがわかった。
論文 参考訳(メタデータ) (2021-12-27T04:53:36Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Motion-Encoded Particle Swarm Optimization for Moving Target Search
Using UAVs [4.061135251278187]
本稿では,無人航空機(UAV)を用いた移動目標探索のための動き符号化粒子群最適化(MPSO)という新しいアルゴリズムを提案する。
提案するMPSOは,PSOアルゴリズムで粒子生成に進化する一連のUAV運動経路として探索軌道を符号化することにより,その問題を解決するために開発された。
既存手法による広範囲なシミュレーションの結果,提案手法は検出性能を24%,時間性能を4.71倍改善した。
論文 参考訳(メタデータ) (2020-10-05T14:17:49Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。