On the Convergence Rates of Set Membership Estimation of Linear Systems with Disturbances Bounded by General Convex Sets
- URL: http://arxiv.org/abs/2406.00574v1
- Date: Sat, 1 Jun 2024 23:41:29 GMT
- Title: On the Convergence Rates of Set Membership Estimation of Linear Systems with Disturbances Bounded by General Convex Sets
- Authors: Haonan Xu, Yingying Li,
- Abstract summary: This paper focuses on a method commonly used in (robust constrained) control literature: set membership estimation (SME)
SME tends to enjoy better empirical performance than LSE's confidence bounds when the system disturbances are bounded.
The main contribution of this paper is relaxing the assumption on the disturbance support and establishing the convergence rates of SME for general convex supports.
- Score: 10.543371327361074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the uncertainty set estimation of system parameters of linear dynamical systems with bounded disturbances, which is motivated by robust (adaptive) constrained control. Departing from the confidence bounds of least square estimation from the machine-learning literature, this paper focuses on a method commonly used in (robust constrained) control literature: set membership estimation (SME). SME tends to enjoy better empirical performance than LSE's confidence bounds when the system disturbances are bounded. However, the theoretical guarantees of SME are not fully addressed even for i.i.d. bounded disturbances. In the literature, SME's convergence has been proved for general convex supports of the disturbances, but SME's convergence rate assumes a special type of disturbance support: $l_\infty$ ball. The main contribution of this paper is relaxing the assumption on the disturbance support and establishing the convergence rates of SME for general convex supports, which closes the gap on the applicability of the convergence and convergence rates results. Numerical experiments on SME and LSE's confidence bounds are also provided for different disturbance supports.
Related papers
- Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification.
We show that the framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains.
This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
arXiv Detail & Related papers (2025-04-24T15:39:46Z) - Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
We establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning.
We show that the widely used beam search method suffers from unacceptable over-optimism.
We propose Supervised Optimism Correction, which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations.
arXiv Detail & Related papers (2025-04-10T07:50:03Z) - Beyond Non-Degeneracy: Revisiting Certainty Equivalent Heuristic for Online Linear Programming [18.371947752008744]
We show that Certainty Equivalent achieves uniformly near-optimal regret under mild assumptions on the underlying distribution.
Our result implies that, contrary to prior belief, CE effectively beats the curse of degeneracy for a wide range of problem instances.
These techniques may find potential applications in broader online decision-making contexts.
arXiv Detail & Related papers (2025-01-03T09:21:27Z) - Distributionally Robust Policy and Lyapunov-Certificate Learning [13.38077406934971]
Key challenge in designing controllers with stability guarantees for uncertain systems is the accurate determination of and adaptation to shifts in model parametric uncertainty during online deployment.
We tackle this with a novel distributionally robust formulation of the Lyapunov derivative chance constraint ensuring a monotonic decrease of the Lyapunov certificate.
We show that, for the resulting closed-loop system, the global stability of its equilibrium can be certified with high confidence, even with Out-of-Distribution uncertainties.
arXiv Detail & Related papers (2024-04-03T18:57:54Z) - f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization [9.591164070876689]
This paper presents a unified optimization framework for fair empirical risk based on f-divergence measures (f-FERM)
In addition, our experiments demonstrate the superiority of fairness-accuracy tradeoffs offered by f-FERM for almost all batch sizes.
Our extension is based on a distributionally robust optimization reformulation of f-FERM objective under $L_p$ norms as uncertainty sets.
arXiv Detail & Related papers (2023-12-06T03:14:16Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Learning the Uncertainty Sets for Control Dynamics via Set Membership: A Non-Asymptotic Analysis [18.110158316883403]
This paper focuses on set membership estimation (SME) for unknown linear systems.
We provide the first convergence rate bounds for SME and discuss variations of SME under relaxed assumptions.
We also provide numerical results demonstrating SME's practical promise.
arXiv Detail & Related papers (2023-09-26T03:58:06Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
We present a new monotonic improvement guarantee for optimizing decentralized policies in cooperative Multi-Agent Reinforcement Learning (MARL)
We show that a trust region constraint can be effectively enforced in a principled way by bounding independent ratios based on the number of agents in training.
arXiv Detail & Related papers (2022-01-31T20:39:48Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
Kernel techniques are among the most popular and flexible approaches in data science.
Mean embedding gives rise to a divergence measure referred to as maximum mean discrepancy (MMD)
In this paper we focus on the problem of MMD estimation when the mean embedding of one of the underlying distributions is available analytically.
arXiv Detail & Related papers (2021-10-15T21:29:27Z) - Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
Optimization [69.07420650261649]
We introduce a novel, simple, and powerful contrastive MI estimator named as FLO.
Empirically, our FLO estimator overcomes the limitations of its predecessors and learns more efficiently.
The utility of FLO is verified using an extensive set of benchmarks, which also reveals the trade-offs in practical MI estimation.
arXiv Detail & Related papers (2021-07-02T15:20:41Z) - Relative Deviation Margin Bounds [55.22251993239944]
We give two types of learning bounds, both distribution-dependent and valid for general families, in terms of the Rademacher complexity.
We derive distribution-dependent generalization bounds for unbounded loss functions under the assumption of a finite moment.
arXiv Detail & Related papers (2020-06-26T12:37:17Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.