Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models
- URL: http://arxiv.org/abs/2406.00628v1
- Date: Sun, 2 Jun 2024 06:10:31 GMT
- Title: Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models
- Authors: Garrett Crumrine, Izzat Alsmadi, Jesus Guerrero, Yuvaraj Munian,
- Abstract summary: "Mallas" are malicious services that exploit large language models (LLMs) for nefarious purposes.
This paper delves into the proliferation of Mallas by examining the use of various pre-trained language models and their efficiency and vulnerabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized how we interact with machines. However, this technological advancement has been paralleled by the emergence of "Mallas," malicious services operating underground that exploit LLMs for nefarious purposes. Such services create malware, phishing attacks, and deceptive websites, escalating the cyber security threats landscape. This paper delves into the proliferation of Mallas by examining the use of various pre-trained language models and their efficiency and vulnerabilities when misused. Building on a dataset from the Common Vulnerabilities and Exposures (CVE) program, it explores fine-tuning methodologies to generate code and explanatory text related to identified vulnerabilities. This research aims to shed light on the operational strategies and exploitation techniques of Mallas, leading to the development of more secure and trustworthy AI applications. The paper concludes by emphasizing the need for further research, enhanced safeguards, and ethical guidelines to mitigate the risks associated with the malicious application of LLMs.
Related papers
- Security of Language Models for Code: A Systematic Literature Review [22.046891149121812]
Language models for code (CodeLMs) have emerged as powerful tools for code-related tasks.
CodeLMs are susceptible to security vulnerabilities, drawing increasing research attention from domains such as software engineering, artificial intelligence, and cybersecurity.
arXiv Detail & Related papers (2024-10-21T04:27:41Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - Exploring LLMs for Malware Detection: Review, Framework Design, and Countermeasure Approaches [0.24578723416255752]
The rising use of Large Language Models to create and disseminate malware poses a significant cybersecurity challenge.
This paper provides a comprehensive overview of LLMs and their role in malware detection from diverse sources.
We examine five specific applications of LLMs: Malware honeypots, identification of text-based threats, code analysis for detecting malicious intent, trend analysis of malware, and detection of non-standard disguised malware.
arXiv Detail & Related papers (2024-09-11T19:33:44Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)
We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.
We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative [55.08395463562242]
Multimodal Large Language Models (MLLMs) are constantly defining the new boundary of Artificial General Intelligence (AGI)
Our paper explores a novel vulnerability in MLLM societies - the indirect propagation of malicious content.
arXiv Detail & Related papers (2024-02-20T23:08:21Z) - RatGPT: Turning online LLMs into Proxies for Malware Attacks [0.0]
We present a proof-of-concept where ChatGPT is used for the dissemination of malicious software while evading detection.
We also present the general approach as well as essential elements in order to stay undetected and make the attack a success.
arXiv Detail & Related papers (2023-08-17T20:54:39Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.