Security of Language Models for Code: A Systematic Literature Review
- URL: http://arxiv.org/abs/2410.15631v1
- Date: Mon, 21 Oct 2024 04:27:41 GMT
- Title: Security of Language Models for Code: A Systematic Literature Review
- Authors: Yuchen Chen, Weisong Sun, Chunrong Fang, Zhenpeng Chen, Yifei Ge, Tingxu Han, Quanjun Zhang, Yang Liu, Zhenyu Chen, Baowen Xu,
- Abstract summary: Language models for code (CodeLMs) have emerged as powerful tools for code-related tasks.
CodeLMs are susceptible to security vulnerabilities, drawing increasing research attention from domains such as software engineering, artificial intelligence, and cybersecurity.
- Score: 22.046891149121812
- License:
- Abstract: Language models for code (CodeLMs) have emerged as powerful tools for code-related tasks, outperforming traditional methods and standard machine learning approaches. However, these models are susceptible to security vulnerabilities, drawing increasing research attention from domains such as software engineering, artificial intelligence, and cybersecurity. Despite the growing body of research focused on the security of CodeLMs, a comprehensive survey in this area remains absent. To address this gap, we systematically review 67 relevant papers, organizing them based on attack and defense strategies. Furthermore, we provide an overview of commonly used language models, datasets, and evaluation metrics, and highlight open-source tools and promising directions for future research in securing CodeLMs.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
Large language models (LLMs) have brought significant advancements to code generation and code repair.
However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities.
We aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs.
arXiv Detail & Related papers (2024-07-02T16:13:21Z) - Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models [0.0]
"Mallas" are malicious services that exploit large language models (LLMs) for nefarious purposes.
This paper delves into the proliferation of Mallas by examining the use of various pre-trained language models and their efficiency and vulnerabilities.
arXiv Detail & Related papers (2024-06-02T06:10:31Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
The rise of Large Language Models (LLMs) has revolutionized our comprehension of intelligence bringing us closer to Artificial Intelligence.
This study examines the existing literature, providing a thorough characterization of both defensive and adversarial applications of LLMs within the realm of cybersecurity.
arXiv Detail & Related papers (2024-01-30T16:55:25Z) - Survey of Vulnerabilities in Large Language Models Revealed by
Adversarial Attacks [5.860289498416911]
Large Language Models (LLMs) are swiftly advancing in architecture and capability.
As they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows.
This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs.
arXiv Detail & Related papers (2023-10-16T21:37:24Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
We present L2CEval, a systematic evaluation of the language-to-code generation capabilities of large language models (LLMs)
We analyze the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods.
In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs.
arXiv Detail & Related papers (2023-09-29T17:57:00Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.