論文の概要: FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.00645v1
- Date: Sun, 2 Jun 2024 07:20:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:56:22.805021
- Title: FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning
- Title(参考訳): FuRL:強化学習のためのファジィリワードとしての視覚言語モデル
- Authors: Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, Benoit Boulet,
- Abstract要約: オンライン強化学習(RL)における事前学習型視覚言語モデル(VLM)の活用について検討する。
本稿ではまず,VLMをRLタスクの報酬として適用する際の報酬ミスアライメントの問題を同定する。
ファジィVLM報酬支援RL(FuRL)という軽量微調整法を導入する。
- 参考スコア(独自算出の注目度): 18.60627708199452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL). In particular, we focus on sparse reward tasks with pre-defined textual task descriptions. We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks. To address this issue, we introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL), based on reward alignment and relay RL. Specifically, we enhance the performance of SAC/DrQ baseline agents on sparse reward tasks by fine-tuning VLM representations and using relay RL to avoid local minima. Extensive experiments on the Meta-world benchmark tasks demonstrate the efficacy of the proposed method. Code is available at: {\footnotesize\url{https://github.com/fuyw/FuRL}}.
- Abstract(参考訳): 本研究では,オンライン強化学習(RL)における事前学習型視覚言語モデル(VLM)の活用方法について検討する。
特に、事前に定義されたテキストタスク記述を伴うスパース報酬タスクに焦点をあてる。
まず,VLMをRLタスクの報酬として適用する際の報酬不一致の問題を同定する。
本稿では,報酬アライメントとリレーRLに基づくファジィVLM報酬支援RL(FuRL)という軽量微調整手法を提案する。
具体的には、細調整VLM表現とリレーRLを用いて局所最小化を回避することで、スパース報酬タスクにおけるSAC/DrQベースラインエージェントの性能を向上させる。
Meta-worldベンチマークタスクに関する大規模な実験により,提案手法の有効性が示された。
コードは: {\footnotesize\url{https://github.com/fuyw/FuRL}}で入手できる。
関連論文リスト
- Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
本稿では,PPOを用いた強化学習(RL)の実現可能性について検討する。
我々は,生成した出力の質を自動的に評価するために,明示的な報酬関数をプログラムできるプログラミングなどの形式言語で表されるタスクに焦点をあてる。
以上の結果から,2つの形式言語タスクに対する純粋なRLベースのトレーニングは困難であり,単純な算術タスクにおいても成功は限られていることがわかった。
論文 参考訳(メタデータ) (2024-10-22T15:59:58Z) - Countering Reward Over-optimization in LLM with Demonstration-Guided Reinforcement Learning [49.87923965553233]
強化学習は、大きな言語モデルで過度に最適化される。
報酬目的を再検討するために、Reward from Demonstration (RCfD)を導入する。
RCfD は ROO を緩和しながら, 注意深く調整されたベースラインに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-04-30T09:57:21Z) - Code as Reward: Empowering Reinforcement Learning with VLMs [37.862999288331906]
本稿では,事前学習した視覚言語モデルから高密度報酬関数を生成するために,Code as Reward (VLM-CaR) というフレームワークを提案する。
VLM-CaRは、VLMを直接クエリする際の計算負担を大幅に削減する。
このアプローチによって生成される高密度な報酬は、様々な離散的かつ連続的な環境において非常に正確であることを示す。
論文 参考訳(メタデータ) (2024-02-07T11:27:45Z) - RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback [24.759613248409167]
リワードエンジニアリングは、強化学習研究における長年の課題である。
エージェントが新しいタスクを学習するための報酬関数を自動生成するRL-VLM-Fを提案する。
我々は、RL-VLM-Fが、様々な領域にまたがる効果的な報酬とポリシーを効果的に生成できることを実証した。
論文 参考訳(メタデータ) (2024-02-06T04:06:06Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
強化学習(RL)は、大規模言語モデル(LLM)の訓練に広く用いられている。
本稿では,報酬モデルとして生成モデルを組み込んだRL法 RLMEC を提案する。
生成報酬モデルに基づいて、トレーニングのためのトークンレベルRL目標と、RLプロセスの安定化のための模倣ベース正規化を設計する。
論文 参考訳(メタデータ) (2024-01-11T17:58:41Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
本稿では,強化学習のための事前学習信号としてLRFの機能を活用することを提案する。
我々の VLM プレトレーニングアプローチは,従来の LRF の使い方とは違い,ロボット操作タスクにおけるサンプル効率の学習を温めることができる。
論文 参考訳(メタデータ) (2023-08-23T17:37:51Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Rewriting History with Inverse RL: Hindsight Inference for Policy
Improvement [137.29281352505245]
この結果から,多くのタスクを効率よく解くために,RLアルゴリズムのタンデムに逆RLを使用できることが示唆された。
実験により,逆RLを用いた学習が一般的なマルチタスク環境における学習を加速することを確認した。
論文 参考訳(メタデータ) (2020-02-25T18:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。