FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning
- URL: http://arxiv.org/abs/2406.00645v2
- Date: Wed, 5 Jun 2024 00:05:23 GMT
- Title: FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning
- Authors: Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, Benoit Boulet,
- Abstract summary: We investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL)
We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks.
We introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL)
- Score: 18.60627708199452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL). In particular, we focus on sparse reward tasks with pre-defined textual task descriptions. We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks. To address this issue, we introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL), based on reward alignment and relay RL. Specifically, we enhance the performance of SAC/DrQ baseline agents on sparse reward tasks by fine-tuning VLM representations and using relay RL to avoid local minima. Extensive experiments on the Meta-world benchmark tasks demonstrate the efficacy of the proposed method. Code is available at: https://github.com/fuyw/FuRL.
Related papers
- Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
arXiv Detail & Related papers (2024-10-22T15:59:58Z) - Countering Reward Over-optimization in LLM with Demonstration-Guided Reinforcement Learning [49.87923965553233]
Reinforcement Learning can lead to reward over-optimization in large language models.
We introduce the Reward from Demonstration (RCfD) to recalibrate the reward objective.
We show that RCfD achieves comparable performance to carefully tuned baselines while mitigating ROO.
arXiv Detail & Related papers (2024-04-30T09:57:21Z) - Code as Reward: Empowering Reinforcement Learning with VLMs [37.862999288331906]
We propose a framework named Code as Reward (VLM-CaR) to produce dense reward functions from pre-trained Vision-Language Models.
VLM-CaR significantly reduces the computational burden of querying the VLM directly.
We show that the dense rewards generated through our approach are very accurate across a diverse set of discrete and continuous environments.
arXiv Detail & Related papers (2024-02-07T11:27:45Z) - RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback [24.759613248409167]
Reward engineering has long been a challenge in Reinforcement Learning research.
We propose RL-VLM-F, a method that automatically generates reward functions for agents to learn new tasks.
We demonstrate that RL-VLM-F successfully produces effective rewards and policies across various domains.
arXiv Detail & Related papers (2024-02-06T04:06:06Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
Reinforcement learning (RL) has been widely used in training large language models (LLMs)
We propose a new RL method named RLMEC that incorporates a generative model as the reward model.
Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process.
arXiv Detail & Related papers (2024-01-11T17:58:41Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
We propose leveraging the capabilities of LRFs as a pretraining signal for reinforcement learning.
Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks.
arXiv Detail & Related papers (2023-08-23T17:37:51Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Rewriting History with Inverse RL: Hindsight Inference for Policy
Improvement [137.29281352505245]
We show that hindsight relabeling is inverse RL, an observation that suggests that we can use inverse RL in tandem for RL algorithms to efficiently solve many tasks.
Our experiments confirm that relabeling data using inverse RL accelerates learning in general multi-task settings.
arXiv Detail & Related papers (2020-02-25T18:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.