Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards
- URL: http://arxiv.org/abs/2410.17126v1
- Date: Tue, 22 Oct 2024 15:59:58 GMT
- Title: Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards
- Authors: Alexander G. Padula, Dennis J. N. J. Soemers,
- Abstract summary: This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
- Score: 49.7719149179179
- License:
- Abstract: Proximal Policy Optimization (PPO) is commonly used in Reinforcement Learning from Human Feedback to align large language models (LLMs) with downstream tasks. This paper investigates the feasibility of using PPO for direct reinforcement learning (RL) from explicitly programmed reward signals, as opposed to indirect learning from human feedback via an intermediary reward model. We focus on tasks expressed through formal languages, such as mathematics and programming, where explicit reward functions can be programmed to automatically assess the quality of generated outputs. We apply this approach to a sentiment alignment task, a simple arithmetic task, and a more complex game synthesis task. The sentiment alignment task replicates prior research and serves to validate our experimental setup. Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task. We propose a novel batch-entropy regularization term to aid exploration, although training is not yet entirely stable. Our findings suggest that direct RL training of LLMs may be more suitable for relatively minor changes, such as alignment, than for learning new tasks altogether, even if an informative reward signal can be expressed programmatically.
Related papers
- LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs [27.014415210732103]
We introduce textbfLanguage textbfModel textbfGuided textbfTrade-offs (i.e., textbfLMGT), a novel, sample-efficient framework for Reinforcement Learning.
arXiv Detail & Related papers (2024-09-07T07:40:43Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - $\mathcal{B}$-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis [39.742755916373284]
Program synthesis aims to create accurate, executable programs from problem specifications.
Recent studies have leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs)
Our work explores the feasibility of value-based approaches, leading to the development of our $mathcalB$-Coder.
arXiv Detail & Related papers (2023-10-04T21:40:36Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
We propose leveraging the capabilities of LRFs as a pretraining signal for reinforcement learning.
Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks.
arXiv Detail & Related papers (2023-08-23T17:37:51Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Language Models can Solve Computer Tasks [13.914130729517584]
We show that a pre-trained large language model (LLM) agent can execute computer tasks guided by natural language using a simple prompting scheme.
We compare multiple LLMs and find that RCI with the InstructGPT-3+RLHF LLM is state-of-the-art on MiniWoB++.
arXiv Detail & Related papers (2023-03-30T16:01:52Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.