論文の概要: Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification
- arxiv url: http://arxiv.org/abs/2406.00672v1
- Date: Sun, 2 Jun 2024 08:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:56:22.782318
- Title: Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification
- Title(参考訳): タスク指向埋め込み数:全スライド画像分類のためのヒューリスティッククラスタリング駆動特徴ファインタニング
- Authors: Xuenian Wang, Shanshan Shi, Renao Yan, Qiehe Sun, Lianghui Zhu, Tian Guan, Yonghong He,
- Abstract要約: 本稿では,クラスタリング駆動型機能微調整法(HC-FT)を提案する。
提案手法はCAMELYON16とBRACSの両方で評価され,それぞれ97.13%,85.85%のAUCが得られた。
- 参考スコア(独自算出の注目度): 1.292108130501585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of whole slide image (WSI) classification, multiple instance learning (MIL) serves as a promising approach, commonly decoupled into feature extraction and aggregation. In this paradigm, our observation reveals that discriminative embeddings are crucial for aggregation to the final prediction. Among all feature updating strategies, task-oriented ones can capture characteristics specifically for certain tasks. However, they can be prone to overfitting and contaminated by samples assigned with noisy labels. To address this issue, we propose a heuristic clustering-driven feature fine-tuning method (HC-FT) to enhance the performance of multiple instance learning by providing purified positive and hard negative samples. Our method first employs a well-trained MIL model to evaluate the confidence of patches. Then, patches with high confidence are marked as positive samples, while the remaining patches are used to identify crucial negative samples. After two rounds of heuristic clustering and selection, purified positive and hard negative samples are obtained to facilitate feature fine-tuning. The proposed method is evaluated on both CAMELYON16 and BRACS datasets, achieving an AUC of 97.13% and 85.85%, respectively, consistently outperforming all compared methods.
- Abstract(参考訳): スライド画像全体(WSI)分類の分野では、多重インスタンス学習(MIL)が有望なアプローチとして機能し、通常は特徴抽出と集約に分離される。
このパラダイムでは,最終予測への集約には識別的埋め込みが不可欠であることが明らかとなった。
あらゆる機能更新戦略の中で、タスク指向のものは特定のタスクに特有な特徴を捉えることができる。
しかし、ノイズラベルが割り当てられたサンプルによって過剰に適合し汚染される傾向がある。
そこで本研究では,クラスタリング駆動型特徴微調整法(HC-FT)を提案する。
提案手法はまず,パッチの信頼性を評価するために,よく訓練されたMILモデルを用いている。
次に、信頼度の高いパッチは正のサンプルとしてマークされ、残りのパッチは重要な負のサンプルを特定するために使用される。
2ラウンドのヒューリスティッククラスタリングと選択の後、精製された正および硬負のサンプルを取得し、特徴的微調整を容易にする。
提案手法はCAMELYON16とBRACSの両方のデータセットで評価され,それぞれ97.13%,85.85%のAUCが得られた。
関連論文リスト
- cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
マルチプル・インスタンス・ラーニング (MIL) は全スライス・ヒストパラメトリック・イメージ (WSI) 解析に広く応用されている。
MILの既存の集約戦略は、主にインスタンス間の一階距離に依存するが、各インスタンスの真の特徴分布を正確に近似することができない。
本稿では、複数のインスタンス学習のための新しいベイズ非パラメトリックフレームワークを提案し、WSIのインスタンス・ツー・バッグ特性を組み込むためにディリクレ・プロセスのカスケード(cDP)を採用する。
論文 参考訳(メタデータ) (2024-07-16T07:28:39Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
本研究では,試料内およびサンプル間制約によるサンプルワイドアライメント問題として定式化できる,対照的な知識蒸留手法を提案する。
本手法は, 数値を考慮し, 同一試料中のロジット差を最小化する。
CIFAR-100, ImageNet-1K, MS COCOの3つのデータセットについて総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-22T11:52:40Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
テスト時間適応(TTA)は、推論中にトレーニング済みのソースモデルをターゲットドメインに継続的に適応させるタスクである。
1つの一般的なアプローチは、推定擬似ラベルによるクロスエントロピー損失を伴う微調整モデルである。
本研究は, 各試料の分類誤差を最小化することで, クロスエントロピー損失の脆弱性がラベルノイズを引き起こすことを明らかにした。
本稿では,プロトタイプ中心の損失計算を特徴とする新しいDPL法を提案する。
論文 参考訳(メタデータ) (2024-01-15T03:33:39Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level
Multi-Class Classification in Whole-Slide Images [10.8479107614771]
全スライディング画像(WSI)解析は、がんの診断と治療において重要な役割を担っている。
本稿では,新しい自己教師型学習手法であるNearby Patch Contrastive Learning(NearbyPatchCL)を紹介する。
本手法は,トップ1分類精度87.56%で,教師付きベースラインと最先端SSL法を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-12T18:24:44Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
本稿では、サンプルビューとクラスビューの両方でコントラスト損失を構築する新しい二重コントラストディープクラスタリング(DCDC)フレームワークを紹介します。
具体的には、サンプルビューに対して、元のサンプルとその拡張バージョンのクラス分布を正のサンプルペアとして設定する。
クラスビューでは、クラスのサンプル分布から正のペアと負のペアを構築します。
このように、2つのコントラスト損失は、サンプルとクラスレベルでのミニバッチサンプルのクラスタリング結果をうまく制限します。
論文 参考訳(メタデータ) (2021-03-09T15:15:32Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot Object Detection (FSOD) は、ディテクターがトレーニングインスタンスをほとんど持たない未確認のクラスに適応するのに役立つ。
FSODにおけるオブジェクトスケールを拡張化するためのMPSR(Multi-scale Positive Sample Refinement)アプローチを提案する。
MPSRは、オブジェクトピラミッドとして多スケールの正のサンプルを生成し、様々なスケールで予測を洗練させる。
論文 参考訳(メタデータ) (2020-07-18T09:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。