Logistic Variational Bayes Revisited
- URL: http://arxiv.org/abs/2406.00713v1
- Date: Sun, 2 Jun 2024 11:32:28 GMT
- Title: Logistic Variational Bayes Revisited
- Authors: Michael Komodromos, Marina Evangelou, Sarah Filippi,
- Abstract summary: Variational logistic regression is a popular method for approximate Bayesian inference.
Due to the intractability of the Evidence Lower Bound, authors have turned to the use of Monte Carlo, quadrature or bounds to perform inference.
In this paper we introduce a new bound for the expectation of softplus function.
We show that this bound is tighter than the state-of-the-art, and that the resulting variational posterior achieves state-of-the-art performance.
- Score: 1.256245863497516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational logistic regression is a popular method for approximate Bayesian inference seeing wide-spread use in many areas of machine learning including: Bayesian optimization, reinforcement learning and multi-instance learning to name a few. However, due to the intractability of the Evidence Lower Bound, authors have turned to the use of Monte Carlo, quadrature or bounds to perform inference, methods which are costly or give poor approximations to the true posterior. In this paper we introduce a new bound for the expectation of softplus function and subsequently show how this can be applied to variational logistic regression and Gaussian process classification. Unlike other bounds, our proposal does not rely on extending the variational family, or introducing additional parameters to ensure the bound is tight. In fact, we show that this bound is tighter than the state-of-the-art, and that the resulting variational posterior achieves state-of-the-art performance, whilst being significantly faster to compute than Monte-Carlo methods.
Related papers
- Stein Variational Newton Neural Network Ensembles [6.272841340448698]
We propose a novel approximate Bayesian inference method that modifies deep ensembles to incorporate Stein Variational Newton updates.
Our approach uniquely integrates scalable modern Hessian approximations, achieving faster convergence and more accurate posterior distribution approximations.
arXiv Detail & Related papers (2024-11-04T08:33:24Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
We develop an optimization algorithm suitable for Bayesian learning in complex models.
Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations.
arXiv Detail & Related papers (2022-05-23T18:54:27Z) - Transfer Learning with Gaussian Processes for Bayesian Optimization [9.933956770453438]
We provide a unified view on hierarchical GP models for transfer learning, which allows us to analyze the relationship between methods.
We develop a novel closed-form boosted GP transfer model that fits between existing approaches in terms of complexity.
We evaluate the performance of the different approaches in large-scale experiments and highlight strengths and weaknesses of the different transfer-learning methods.
arXiv Detail & Related papers (2021-11-22T14:09:45Z) - The FMRIB Variational Bayesian Inference Tutorial II: Stochastic
Variational Bayes [1.827510863075184]
This tutorial revisits the original FMRIB Variational Bayes tutorial.
This new approach bears a lot of similarity to, and has benefited from, computational methods applied to machine learning algorithms.
arXiv Detail & Related papers (2020-07-03T11:31:52Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
This paper presents a framework that encompasses and generalizes existing approaches that use controls, kernels and neural networks.
Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
arXiv Detail & Related papers (2020-06-12T22:03:25Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
Variational inference techniques based on inducing variables provide an elegant framework for scalable estimation in Gaussian process (GP) models.
In this work we challenge the common wisdom that optimizing the inducing inputs in variational framework yields optimal performance.
arXiv Detail & Related papers (2020-03-06T08:53:18Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z) - The k-tied Normal Distribution: A Compact Parameterization of Gaussian
Mean Field Posteriors in Bayesian Neural Networks [46.677567663908185]
Variational Bayesian Inference is a popular methodology for approxing posteriorimating over Bayesian neural network weights.
Recent work has explored ever richer parameterizations of the approximate posterior in the hope of improving performance.
We find that by decomposing these variational parameters into a low-rank factorization, we can make our variational approximation more compact without decreasing the models' performance.
arXiv Detail & Related papers (2020-02-07T07:33:15Z) - Lifted Hybrid Variational Inference [31.441922284854893]
We investigate two approximate lifted variational approaches that are applicable to hybrid domains.
We demonstrate that the proposed variational methods are both scalable and can take advantage of approximate model symmetries.
We present a sufficient condition for the Bethe approximation to yield a non-trivial estimate over the marginal polytope.
arXiv Detail & Related papers (2020-01-08T22:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.