Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations
- URL: http://arxiv.org/abs/2003.03080v4
- Date: Tue, 23 Feb 2021 13:22:25 GMT
- Title: Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations
- Authors: Simone Rossi and Markus Heinonen and Edwin V. Bonilla and Zheyang Shen
and Maurizio Filippone
- Abstract summary: Variational inference techniques based on inducing variables provide an elegant framework for scalable estimation in Gaussian process (GP) models.
In this work we challenge the common wisdom that optimizing the inducing inputs in variational framework yields optimal performance.
- Score: 27.43948386608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational inference techniques based on inducing variables provide an
elegant framework for scalable posterior estimation in Gaussian process (GP)
models. Besides enabling scalability, one of their main advantages over sparse
approximations using direct marginal likelihood maximization is that they
provide a robust alternative for point estimation of the inducing inputs, i.e.
the location of the inducing variables. In this work we challenge the common
wisdom that optimizing the inducing inputs in the variational framework yields
optimal performance. We show that, by revisiting old model approximations such
as the fully-independent training conditionals endowed with powerful
sampling-based inference methods, treating both inducing locations and GP
hyper-parameters in a Bayesian way can improve performance significantly. Based
on stochastic gradient Hamiltonian Monte Carlo, we develop a fully Bayesian
approach to scalable GP and deep GP models, and demonstrate its
state-of-the-art performance through an extensive experimental campaign across
several regression and classification problems.
Related papers
- Likelihood approximations via Gaussian approximate inference [3.4991031406102238]
We propose efficient schemes to approximate the effects of non-Gaussian likelihoods by Gaussian densities.
Our results attain good approximation quality for binary and multiclass classification in large-scale point-estimate and distributional inferential settings.
As a by-product, we show that the proposed approximate log-likelihoods are a superior alternative to least-squares on raw labels for neural network classification.
arXiv Detail & Related papers (2024-10-28T05:39:26Z) - Amortized Variational Inference for Deep Gaussian Processes [0.0]
Deep Gaussian processes (DGPs) are multilayer generalizations of Gaussian processes (GPs)
We introduce amortized variational inference for DGPs, which learns an inference function that maps each observation to variational parameters.
Our method performs similarly or better than previous approaches at less computational cost.
arXiv Detail & Related papers (2024-09-18T20:23:27Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
We develop an optimization algorithm suitable for Bayesian learning in complex models.
Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations.
arXiv Detail & Related papers (2022-05-23T18:54:27Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
We study the doubly formulation of the BayesianVM model amenable with minibatch training.
We show how this framework is compatible with different latent variable formulations and perform experiments to compare a suite of models.
We demonstrate how we can train in the presence of massively missing data and obtain high-fidelity reconstructions.
arXiv Detail & Related papers (2022-02-25T21:21:51Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Scalable Cross Validation Losses for Gaussian Process Models [22.204619587725208]
We use Polya-Gamma auxiliary variables and variational inference to accommodate binary and multi-class classification.
We find that our method offers fast training and excellent predictive performance.
arXiv Detail & Related papers (2021-05-24T21:01:47Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation [60.93091603232817]
We develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function.
This is done by sampling the exploration-exploitation trade-off parameter from a distribution.
We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret.
arXiv Detail & Related papers (2020-06-08T00:28:41Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.