論文の概要: GLADformer: A Mixed Perspective for Graph-level Anomaly Detection
- arxiv url: http://arxiv.org/abs/2406.00734v2
- Date: Wed, 3 Jul 2024 04:30:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 19:24:59.195182
- Title: GLADformer: A Mixed Perspective for Graph-level Anomaly Detection
- Title(参考訳): GLADformer:グラフレベルの異常検出のための混合視点
- Authors: Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Dalin Zhang, Siyang Lu, Binyong Li, Wei Gong, Hai Wan, Xibin Zhao,
- Abstract要約: マルチパースペクティブなグラフレベルの異常検出器であるGLADformerを提案する。
具体的には、まず、グローバルスペクトル拡張を用いたグラフトランスフォーマーモジュールを設計する。
局所的な異常特性を明らかにするため、帯域通過スペクトルGNNメッセージパッシングモジュールをカスタマイズする。
- 参考スコア(独自算出の注目度): 24.961973151394826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-Level Anomaly Detection (GLAD) aims to distinguish anomalous graphs within a graph dataset. However, current methods are constrained by their receptive fields, struggling to learn global features within the graphs. Moreover, most contemporary methods are based on spatial domain and lack exploration of spectral characteristics. In this paper, we propose a multi-perspective hybrid graph-level anomaly detector namely GLADformer, consisting of two key modules. Specifically, we first design a Graph Transformer module with global spectrum enhancement, which ensures balanced and resilient parameter distributions by fusing global features and spectral distribution characteristics. Furthermore, to uncover local anomalous attributes, we customize a band-pass spectral GNN message passing module that further enhances the model's generalization capability. Through comprehensive experiments on ten real-world datasets from multiple domains, we validate the effectiveness and robustness of GLADformer. This demonstrates that GLADformer outperforms current state-of-the-art models in graph-level anomaly detection, particularly in effectively capturing global anomaly representations and spectral characteristics.
- Abstract(参考訳): Graph-Level Anomaly Detection (GLAD)は、グラフデータセット内の異常グラフを識別することを目的としている。
しかし、現在の手法は受容場によって制約されており、グラフ内のグローバルな特徴を学習するのに苦労している。
さらに、現代のほとんどの手法は空間領域に基づいており、スペクトル特性の探索が欠如している。
本稿では,2つの鍵モジュールからなる複数パースペクティブなグラフレベルの異常検出器であるGLADformerを提案する。
具体的には,大域的特徴とスペクトル分布特性を融合させることにより,パラメータ分布のバランスと弾力性を確保するグラフ変換器モジュールを設計する。
さらに,局所的な異常特性を明らかにするため,帯域通過スペクトルGNNメッセージパッシングモジュールをカスタマイズし,モデルの一般化機能をさらに強化する。
複数のドメインからの10の実世界のデータセットに関する総合的な実験を通じて、GLADformerの有効性と堅牢性を検証する。
このことは、GLADformerがグラフレベルの異常検出において、特にグローバルな異常表現とスペクトル特性を効果的に捉える際に、現在の最先端モデルよりも優れていることを示している。
関連論文リスト
- UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
UMGADと呼ばれる新しい教師なし多重グラフ異常検出法を提案する。
我々はまず、多重異種グラフにおけるノード間の多重相関関係を学習する。
そして、ノイズや冗長な情報が異常情報抽出に与える影響を弱めるために、属性レベルおよびサブグラフレベルの拡張ビューグラフを生成する。
論文 参考訳(メタデータ) (2024-11-19T15:15:45Z) - Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts [21.05107001235223]
グラフ異常検出(GAD)は、通常のパターンから著しく逸脱したグラフ内のノードを特定することを目的としている。
既存のGADメソッドは、教師付きでも教師なしでも、ワン・モデル・フォー・ワン・データセットのアプローチである。
ゼロショット・ジェネラリストのGADがUNPromptに近づき、一対一検出モデルを訓練する。
論文 参考訳(メタデータ) (2024-10-18T22:23:59Z) - Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning [1.3756846638796]
本稿では,非バランスなGLAD手法を提案する。
我々は、このモデルを脳疾患データセットに適用し、我々の研究の能力を証明することができる。
論文 参考訳(メタデータ) (2024-07-13T13:40:06Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類において顕著な性能を達成した。
本稿では、2つの重要なモジュールからなるスペクトルグラフ推論ネットワーク(SGR)学習フレームワークを提案する。
2つのHSIデータセットの実験により、提案したアーキテクチャが分類精度を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-07-02T20:29:23Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
従来の知恵は、スペクトル畳み込みネットワークは無向グラフ上にしか展開できないと規定している。
ここでは、このグラフフーリエ変換への伝統的な依存が超フルであることを示す。
本稿では,新たに開発されたフィルタの周波数応答解釈を行い,フィルタ表現に使用するベースの影響を調査し,ネットワークを基盤とする特性演算子との相互作用について議論する。
論文 参考訳(メタデータ) (2023-10-03T17:42:09Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。