IENE: Identifying and Extrapolating the Node Environment for Out-of-Distribution Generalization on Graphs
- URL: http://arxiv.org/abs/2406.00764v1
- Date: Sun, 2 Jun 2024 14:43:56 GMT
- Title: IENE: Identifying and Extrapolating the Node Environment for Out-of-Distribution Generalization on Graphs
- Authors: Haoran Yang, Xiaobing Pei, Kai Yuan,
- Abstract summary: We propose IENE, an OOD generalization method on graphs based on node-level environmental identification and extrapolation techniques.
It strengthens the model's ability to extract invariance from two granularities simultaneously, leading to improved generalization.
- Score: 10.087216264788097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the performance degradation of graph neural networks (GNNs) under distribution shifts, the work on out-of-distribution (OOD) generalization on graphs has received widespread attention. A novel perspective involves distinguishing potential confounding biases from different environments through environmental identification, enabling the model to escape environmentally-sensitive correlations and maintain stable performance under distribution shifts. However, in graph data, confounding factors not only affect the generation process of node features but also influence the complex interaction between nodes. We observe that neglecting either aspect of them will lead to a decrease in performance. In this paper, we propose IENE, an OOD generalization method on graphs based on node-level environmental identification and extrapolation techniques. It strengthens the model's ability to extract invariance from two granularities simultaneously, leading to improved generalization. Specifically, to identify invariance in features, we utilize the disentangled information bottleneck framework to achieve mutual promotion between node-level environmental estimation and invariant feature learning. Furthermore, we extrapolate topological environments through graph augmentation techniques to identify structural invariance. We implement the conceptual method with specific algorithms and provide theoretical analysis and proofs for our approach. Extensive experimental evaluations on two synthetic and four real-world OOD datasets validate the superiority of IENE, which outperforms existing techniques and provides a flexible framework for enhancing the generalization of GNNs.
Related papers
- Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation [16.59129444793973]
Distribution shifts between training and testing datasets significantly impair the model performance on graph learning.
We introduce a novel approach using score-based graph generation strategies that synthesize unseen environmental features while preserving the validity and stable features of overall graph patterns.
arXiv Detail & Related papers (2024-10-23T02:09:02Z) - Improving Graph Out-of-distribution Generalization on Real-world Data [25.328653597674197]
This paper presents the theorems of environment-label dependency and mutable rationale invariance.
Based on analytic investigations, a novel variational inference based method named Probability Dependency on Environments and Rationales for OOD Graphs on Real-world Data'' is introduced.
arXiv Detail & Related papers (2024-07-14T13:48:25Z) - Improving out-of-distribution generalization in graphs via hierarchical semantic environments [5.481047026874547]
We propose a novel approach to generate hierarchical environments for each graph.
We introduce a new learning objective that guides our model to learn the diversity of environments within the same hierarchy.
Our framework achieves up to 1.29% and 2.83% improvement over the best baselines on IC50 and EC50 prediction tasks, respectively.
arXiv Detail & Related papers (2024-03-04T07:03:10Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.