Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
- URL: http://arxiv.org/abs/2502.07968v1
- Date: Tue, 11 Feb 2025 21:24:13 GMT
- Title: Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
- Authors: Song Wang, Zhen Tan, Yaochen Zhu, Chuxu Zhang, Jundong Li,
- Abstract summary: We propose an innovative framework, named Generative Risk Minimization (GRM), designed to generate an invariant subgraph for each input graph to be classified, instead of extraction.
We conduct extensive experiments across a variety of real-world graph datasets for both node-level and graph-level OOD generalization.
- Score: 71.48583448654522
- License:
- Abstract: Out-of-distribution (OOD) generalization on graphs aims at dealing with scenarios where the test graph distribution differs from the training graph distributions. Compared to i.i.d. data like images, the OOD generalization problem on graph-structured data remains challenging due to the non-i.i.d. property and complex structural information on graphs. Recently, several works on graph OOD generalization have explored extracting invariant subgraphs that share crucial classification information across different distributions. Nevertheless, such a strategy could be suboptimal for entirely capturing the invariant information, as the extraction of discrete structures could potentially lead to the loss of invariant information or the involvement of spurious information. In this paper, we propose an innovative framework, named Generative Risk Minimization (GRM), designed to generate an invariant subgraph for each input graph to be classified, instead of extraction. To address the challenge of optimization in the absence of optimal invariant subgraphs (i.e., ground truths), we derive a tractable form of the proposed GRM objective by introducing a latent causal variable, and its effectiveness is validated by our theoretical analysis. We further conduct extensive experiments across a variety of real-world graph datasets for both node-level and graph-level OOD generalization, and the results demonstrate the superiority of our framework GRM.
Related papers
- Subgraph Aggregation for Out-of-Distribution Generalization on Graphs [29.884717215947745]
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention.
We propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs.
Experiments on both synthetic and real-world datasets demonstrate that SuGAr outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-10-29T16:54:37Z) - Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization [9.116601683256317]
In this work, we propose a novel framework, called Invariant Graph Learning based on Information bottleneck theory (InfoIGL)
Specifically, InfoIGL introduces a redundancy filter to compress task-irrelevant information related to environmental factors.
Experiments on both synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance under OOD generalization.
arXiv Detail & Related papers (2024-08-03T07:38:04Z) - Unifying Invariance and Spuriousity for Graph Out-of-Distribution via
Probability of Necessity and Sufficiency [19.49531172542614]
We propose a unified framework to exploit the Probability of Necessity and Sufficiency to extract the Invariant Substructure (PNSIS)
Our model outperforms the state-of-the-art techniques on graph OOD on several benchmarks.
arXiv Detail & Related papers (2024-02-14T13:31:53Z) - Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization [54.64375566326931]
Out-of-distribution (OOD) generalization deals with the prevalent learning scenario where test distribution shifts from training distribution.
We propose to achieve graph OOD generalization with the novel design of non-Euclidean-space linear extrapolation.
Our design tailors OOD samples for specific shifts without corrupting underlying causal mechanisms.
arXiv Detail & Related papers (2023-06-13T18:46:28Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
Existing explanation methods focus on the supervised settings, eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored.
In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, textitUnsupervised Subgraph Information Bottleneck (USIB)
We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the robustness of representations benefit the fidelity of explanatory subgraphs.
arXiv Detail & Related papers (2022-05-20T02:50:15Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.