論文の概要: Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation
- arxiv url: http://arxiv.org/abs/2406.00812v1
- Date: Sun, 2 Jun 2024 17:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:16:50.560318
- Title: Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation
- Title(参考訳): 拡散目標生成のための共分散適応シーケンスブラックボックス最適化
- Authors: Yueming Lyu, Kim Yong Tan, Yew Soon Ong, Ivor W. Tsang,
- Abstract要約: ユーザのブラックボックス目標スコアのみを用いた拡散モデルを用いて,ユーザ優先のターゲット生成を行う方法を示す。
数値実験問題と目標誘導型3次元分子生成タスクの両方の実験により,より優れた目標値を得る上で,本手法の優れた性能が示された。
- 参考スコア(独自算出の注目度): 60.41803046775034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models have demonstrated great potential in generating high-quality content for images, natural language, protein domains, etc. However, how to perform user-preferred targeted generation via diffusion models with only black-box target scores of users remains challenging. To address this issue, we first formulate the fine-tuning of the targeted reserve-time stochastic differential equation (SDE) associated with a pre-trained diffusion model as a sequential black-box optimization problem. Furthermore, we propose a novel covariance-adaptive sequential optimization algorithm to optimize cumulative black-box scores under unknown transition dynamics. Theoretically, we prove a $O(\frac{d^2}{\sqrt{T}})$ convergence rate for cumulative convex functions without smooth and strongly convex assumptions. Empirically, experiments on both numerical test problems and target-guided 3D-molecule generation tasks show the superior performance of our method in achieving better target scores.
- Abstract(参考訳): 拡散モデルは、画像、自然言語、タンパク質ドメインなどの高品質なコンテンツを生成する大きな可能性を示している。
しかし,ブラックボックスのターゲットスコアしか持たない拡散モデルを用いて,ユーザ優先のターゲット生成を行う方法はまだ困難である。
この問題に対処するため,我々はまず,事前学習した拡散モデルに付随する目標予備時間確率微分方程式(SDE)の微調整を逐次ブラックボックス最適化問題として定式化する。
さらに、未知の遷移ダイナミクスの下で累積的なブラックボックススコアを最適化する新しい共分散適応逐次最適化アルゴリズムを提案する。
理論的には、滑らかで強凸な仮定を伴わない累積凸函数に対する$O(\frac{d^2}{\sqrt{T}})$収束率を証明する。
実験的に,数値実験問題と目標誘導3次元分子生成タスクの両方に関する実験は,より優れた目標値を得る上で,本手法の優れた性能を示す。
関連論文リスト
- Sharpness-Aware Black-Box Optimization [47.95184866255126]
シャープネスを考慮したブラックボックス最適化(SABO)アルゴリズムを提案する。
実験により, モデル一般化性能向上のためのSABO法の有効性が実証された。
論文 参考訳(メタデータ) (2024-10-16T11:08:06Z) - Diff-BBO: Diffusion-Based Inverse Modeling for Black-Box Optimization [20.45482366024264]
Black-box Optimization (BBO) は、ブラックボックスのオラクルをサンプル効率よく反復的にクエリすることで、目的関数を最適化することを目的としている。
対象空間を条件付き拡散モデルで設計空間にマッピングする最近の逆モデリング手法は、データ多様体を学習する際の印象的な能力を実証している。
オンラインBBO問題に対する拡散モデルを利用した逆アプローチであるDiff-BBOを提案する。
論文 参考訳(メタデータ) (2024-06-30T06:58:31Z) - Principled Preferential Bayesian Optimization [22.269732173306192]
優先ベイズ最適化(BO)の問題について検討する。
一対の候補解よりも優先的なフィードバックしか持たないブラックボックス関数を最適化することを目指している。
この問題を解決するために,効率的な計算手法を用いた楽観的アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-08T02:57:47Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Non-smooth Bayesian Optimization in Tuning Problems [5.768843113172494]
代理モデルの構築は、未知のブラックボックス関数を学習しようとする場合の一般的なアプローチである。
クラスター化ガウス過程 (cGP) と呼ばれる新しい加法的ガウス過程モデルを提案し, 加法的成分はクラスタリングによって誘導される。
調査した例では、反復実験で最大90%の性能向上が可能である。
論文 参考訳(メタデータ) (2021-09-15T20:22:09Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。