Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel
- URL: http://arxiv.org/abs/2406.00924v2
- Date: Thu, 17 Oct 2024 03:54:52 GMT
- Title: Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel
- Authors: Shivam Gupta, Linda Cai, Sitan Chen,
- Abstract summary: We show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
We also show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
- Score: 10.840582511203024
- License:
- Abstract: Sampling algorithms play an important role in controlling the quality and runtime of diffusion model inference. In recent years, a number of works~\cite{chen2023sampling,chen2023ode,benton2023error,lee2022convergence} have proposed schemes for diffusion sampling with provable guarantees; these works show that for essentially any data distribution, one can approximately sample in polynomial time given a sufficiently accurate estimate of its score functions at different noise levels. In this work, we propose a new scheme inspired by Shen and Lee's randomized midpoint method for log-concave sampling~\cite{ShenL19}. We prove that this approach achieves the best known dimension dependence for sampling from arbitrary smooth distributions in total variation distance ($\widetilde O(d^{5/12})$ compared to $\widetilde O(\sqrt{d})$ from prior work). We also show that our algorithm can be parallelized to run in only $\widetilde O(\log^2 d)$ parallel rounds, constituting the first provable guarantees for parallel sampling with diffusion models. As a byproduct of our methods, for the well-studied problem of log-concave sampling in total variation distance, we give an algorithm and simple analysis achieving dimension dependence $\widetilde O(d^{5/12})$ compared to $\widetilde O(\sqrt{d})$ from prior work.
Related papers
- On the query complexity of sampling from non-log-concave distributions [2.4253233571593547]
We study the problem of sampling from a $d$-dimensional distribution with density $p(x)propto e-f(x)$, which does not necessarily satisfy good isoperimetric conditions.
We show that for a wide range of parameters, sampling is strictly easier than optimization by a super-exponential factor in the dimension $d$.
arXiv Detail & Related papers (2025-02-10T06:54:16Z) - Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [52.69179872700035]
We propose a novel method for sampling from Gibbs distributions of the form $pi(x)proptoexp(-U(x))$ with a potential $U(x)$.
Inspired by diffusion models we propose to consider a sequence $(pit_k)_k$ of approximations of the target density, for which $pit_kapprox pi$ for $k$ small and, on the other hand, $pit_k$ exhibits favorable properties for sampling for $k$ large.
arXiv Detail & Related papers (2025-02-03T13:50:57Z) - Polynomial time sampling from log-smooth distributions in fixed dimension under semi-log-concavity of the forward diffusion with application to strongly dissipative distributions [9.48556659249574]
We provide a sampling algorithm with complexity in fixed dimension.
We prove that our algorithm achieves an expected $epsilon$ error in $KL$ divergence.
As an application, we derive an exponential complexity improvement for the problem of sampling from an $L$-log-smooth distribution.
arXiv Detail & Related papers (2024-12-31T17:51:39Z) - Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations [53.180374639531145]
Self-Refining Diffusion Samplers (SRDS) retain sample quality and can improve latency at the cost of additional parallel compute.
We take inspiration from the Parareal algorithm, a popular numerical method for parallel-in-time integration of differential equations.
arXiv Detail & Related papers (2024-12-11T11:08:09Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Efficiently learning and sampling multimodal distributions with data-based initialization [20.575122468674536]
We consider the problem of sampling a multimodal distribution with a Markov chain given a small number of samples from the stationary measure.
We show that if the Markov chain has a $k$th order spectral gap, samples from the stationary distribution will efficiently generate a sample whose conditional law is $varepsilon$-close in TV distance to the stationary measure.
arXiv Detail & Related papers (2024-11-14T01:37:02Z) - Fast parallel sampling under isoperimetry [10.619901778151336]
We show how to sample in parallel from a distribution $pi$ over $mathbb Rd$ that satisfies a log-Sobolev inequality.
We show that our algorithm outputs samples from a distribution $hatpi$ that is close to $pi$ in Kullback--Leibler divergence.
arXiv Detail & Related papers (2024-01-17T07:24:18Z) - Improved Active Learning via Dependent Leverage Score Sampling [8.400581768343804]
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting.
We propose an easily implemented method based on the emphpivotal sampling algorithm
In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to $50%$.
arXiv Detail & Related papers (2023-10-08T01:51:30Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
This paper investigates group distributionally robust optimization (GDRO) with the goal of learning a model that performs well over $m$ different distributions.
To reduce the number of samples in each round from $m$ to 1, we cast GDRO as a two-player game, where one player conducts and the other executes an online algorithm for non-oblivious multi-armed bandits.
In the second scenario, we propose to optimize the average top-$k$ risk instead of the maximum risk, thereby mitigating the impact of distributions.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
We give the first relative-error algorithms for column subset selection, subspace approximation, projective clustering, and volume on turnstile streams that use space sublinear in $n$.
Our adaptive sampling procedure has a number of applications to various data summarization problems that either improve state-of-the-art or have only been previously studied in the more relaxed row-arrival model.
arXiv Detail & Related papers (2020-04-23T05:00:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.