A Synergistic Approach In Network Intrusion Detection By Neurosymbolic AI
- URL: http://arxiv.org/abs/2406.00938v1
- Date: Mon, 3 Jun 2024 02:24:01 GMT
- Title: A Synergistic Approach In Network Intrusion Detection By Neurosymbolic AI
- Authors: Alice Bizzarri, Chung-En Yu, Brian Jalaian, Fabrizio Riguzzi, Nathaniel D. Bastian,
- Abstract summary: This paper explores the potential of incorporating Neurosymbolic Artificial Intelligence (NSAI) into Network Intrusion Detection Systems (NIDS)
NSAI combines deep learning's data-driven strengths with symbolic AI's logical reasoning to tackle the dynamic challenges in cybersecurity.
The inclusion of NSAI in NIDS marks potential advancements in both the detection and interpretation of intricate network threats.
- Score: 6.315966022962632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevailing approaches in Network Intrusion Detection Systems (NIDS) are often hampered by issues such as high resource consumption, significant computational demands, and poor interpretability. Furthermore, these systems generally struggle to identify novel, rapidly changing cyber threats. This paper delves into the potential of incorporating Neurosymbolic Artificial Intelligence (NSAI) into NIDS, combining deep learning's data-driven strengths with symbolic AI's logical reasoning to tackle the dynamic challenges in cybersecurity, which also includes detailed NSAI techniques introduction for cyber professionals to explore the potential strengths of NSAI in NIDS. The inclusion of NSAI in NIDS marks potential advancements in both the detection and interpretation of intricate network threats, benefiting from the robust pattern recognition of neural networks and the interpretive prowess of symbolic reasoning. By analyzing network traffic data types and machine learning architectures, we illustrate NSAI's distinctive capability to offer more profound insights into network behavior, thereby improving both detection performance and the adaptability of the system. This merging of technologies not only enhances the functionality of traditional NIDS but also sets the stage for future developments in building more resilient, interpretable, and dynamic defense mechanisms against advanced cyber threats. The continued progress in this area is poised to transform NIDS into a system that is both responsive to known threats and anticipatory of emerging, unseen ones.
Related papers
- Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
This paper provides a comprehensive review of machine learning-based Network Intrusion Detection Systems (NIDS)
We critically examine existing research in NIDS, highlighting key trends, strengths, and limitations.
We discuss emerging challenges in the field and offer insights for the development of more robust and resilient NIDS.
arXiv Detail & Related papers (2024-09-27T13:27:29Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
backdoors can be exploited by malicious actors on deep neural networks (DNNs) and cloud services for data processing.
Our approach leverages advanced tensor decomposition algorithms to meticulously analyze the weights of pre-trained DNNs and distinguish between backdoored and clean models.
This advancement enhances the security of deep learning and AI in networked systems, providing essential cybersecurity against evolving threats in emerging technologies.
arXiv Detail & Related papers (2024-03-13T03:10:11Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
Neural networks demonstrate inherent vulnerability to small, non-random perturbations, emerging as adversarial attacks.
A mathematical congruence manifests between this mechanism and the quantum physics' uncertainty principle, casting light on a hitherto unanticipated interdisciplinarity.
arXiv Detail & Related papers (2024-02-16T02:11:27Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic
AI [33.0761784111292]
Neuro-symbolic AI emerges as a promising paradigm to enhance interpretability, robustness, and trustworthiness.
Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
arXiv Detail & Related papers (2024-01-02T05:00:54Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Knowledge-enhanced Neuro-Symbolic AI for Cybersecurity and Privacy [3.425341633647625]
Neuro-Symbolic Artificial Intelligence combines the subsymbolic strengths of neural networks and explicit, symbolic knowledge graphs.
This article describes how applications in cybersecurity and privacy, two most demanding domains, can benefit from Neuro-Symbolic AI.
arXiv Detail & Related papers (2023-07-25T01:29:34Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
Explainable Artificial Intelligence (XAI) aims to create machine learning models that can provide clear and interpretable explanations for their decisions and actions.
In the field of network cybersecurity, XAI has the potential to revolutionize the way we approach network security by enabling us to better understand the behavior of cyber threats.
arXiv Detail & Related papers (2023-03-07T22:54:18Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.